
Trade-offs in System of Systems Acquisition

Frank Royston Burton

Doctor of Engineering

University of York

Computer Science

September 2014

Abstract

Large organisations tend to have multiple organisational goals. Example goals for organisations

that perform search and rescue might be being able to search large areas quickly, and to provide,

for the speedy recovery of survivors. To satisfy these goals, organisations will acquire different

resources such as new systems, training programmes, infrastructure and processes. These different

resources when combined to meet the same organisational goals, can be considered as a System

of Systems (SoS). Organisational goals can be satisfied by completely different resource combina-

tions with each resource combination satisfying the individual goals to varying degrees and with

different overall costs.

Since organisations only have limited resources available to them, there is an incentive for

organisations to find the most efficient resource combinations to satisfy their goals. This can be

considered as performing trade-offs in SoS acquisition.

There are several open research gaps in performing trade-offs in SoS acquisition. The first is

that the resources involved are heterogeneous. How do you compare the benefits of new equip-

ment against new training programmes or organisational structures? The second is the multi-

objective nature of the problem with the different organisational goals competing for the same

limited budget. The third is managing the problem through-life and maintaining the satisfaction

of organisational goals as old system retire and new systems come into service.

This thesis presents a model-based technique (with prototype tool support) that combines tech-

niques from the fields of through life capability management, goal modelling, search-based soft-

ware engineering and model-driven engineering. This technique addresses the three problems

stated above allowing decision makers to more efficiently consider the trade-offs involved when

performing SoS acquisition.

The technique has been evaluated on a realistic case study and on a standard problem found in

the field of search-based software engineering.

2

Contents

Abstract 2

List of Figures 8

List of Tables 10

Acknowledgements 11

Author Declaration 12

1 Introduction 13
1.1 Motivation . 13

1.1.1 Through Life Capability Management 14

1.1.2 Large-scale Complex IT Systems . 16

1.1.3 Relationship to Early Requirements Engineering 16

1.2 Formal Statement of the System of Systems Acquisition Trade-off Problem . . . 17

1.3 Research Gaps . 18

1.3.1 Research Gap 1 - Bridging the gap between the Defence Lines of Devel-

opment and Military Capabilities . 19

1.3.2 Research Gap 2 - Multi-objective Acquisition Trade-offs 19

1.3.3 Research Gap 3 - Scheduling Acquisitions Through Life 19

1.4 Research Objectives and Research Hypothesis 20

1.5 Capability Acquisition Technique with Multi-Objective Search (CATMOS) . . . 21

1.6 Novel Contributions in this thesis . 21

1.7 Thesis Structure . 23

1.8 Research Context . 23

2 Literature Review - Introduction to the Terminology 24
2.1 Introduction . 24

2.2 Capability . 24

2.3 Defence Lines of Development . 25

2.4 Measures of Performance . 26

2.5 Measures of Effectiveness . 26

2.6 Model . 26

2.7 Summary . 27

3

3 Literature Review - Problem Discussion 28
3.1 Military Capability . 28

3.2 Through Life Capability Management . 29

3.3 Wicked Problems . 31

3.3.1 Proposed solutions . 33

3.4 Evolutionary Warfare . 34

3.5 Summary . 35

4 Literature Review - Current Practice 36
4.1 TRAiDE . 36

4.2 Enterprise Architecture Frameworks . 37

4.3 Military Simulation . 38

4.4 Weighted Sum Based Approaches . 39

4.5 NECTISE Architecture Framework . 40

4.6 Summary . 40

5 Literature Review - Applicable Research Fields 41
5.1 Introduction . 41

5.2 Simulation . 41

5.2.1 Discrete event approach . 42

5.2.2 Agent Based Modelling and Simulation 42

5.2.3 General Simulation Concerns . 42

5.3 Goal Modelling . 43

5.4 Model Driven Engineering . 44

5.5 Metaheuristic search . 45

5.5.1 Multi-objective Search . 47

5.6 Sensitivity Analysis . 48

5.7 Decision Support Systems . 48

5.8 Product lines and Feature models . 49

5.9 Summary . 49

6 Problem Description 50
6.1 Introduction . 50

6.2 Capability Management . 50

6.3 Through Life Capability Management . 53

6.4 Relationship with research on acquisition problems 55

6.5 Current naive weighted sum based approaches 57

6.5.1 Considering the capabilities separately 58

6.5.2 Considering the capabilities together . 60

6.5.3 Comparison with naive weighted sum based approaches summary 60

6.6 Summary . 61

4

7 Bridging the gap between the DLoD and capabilities 62
7.1 Research Overview . 62

7.2 Introduction . 62

7.2.1 CATMOS Metamodel . 69

7.2.2 Aggregating Sub-goals . 69

7.3 Tea Making - Example . 69

7.4 Tea Making Textual DSL – Grammar . 75

7.4.1 Problem Overview Information . 75

7.4.2 Representing the top-level capabilities and their decomposition 76

7.4.3 Component descriptions . 77

7.4.4 Qualitative Values . 78

7.5 Tea Making Textual DSL - Example . 78

7.6 Tea Making - Scripts . 80

7.7 Tea Making Example - Pareto Front . 81

7.8 Addressing Research Gap 1 - Technique Features 82

7.8.1 Complex Goal-Tree Decompositions . 82

7.8.2 Partial dependency satisfaction . 83

7.8.3 System of systems properties . 83

7.8.4 Capability Upgrades . 84

7.8.5 Capability Accumulations . 84

7.9 CATMOS DSL Additional Notations excluding Through Life 84

7.9.1 Scripting behaviour . 85

7.9.2 Capability Upgrades . 85

7.9.3 Capability Accumulations . 87

7.10 Summary . 87

8 Multi-objective Acquisition Trade-offs 89
8.1 Pareto optimality . 89

8.2 NSGA-II . 91

8.3 Multi-objective Next Release Problem - Case Study 98

8.3.1 MONRP To CATMOS Overview . 100

8.3.2 CATMOS DSL Explanation - MONRP Case Study Problem 100

8.3.3 CATMOS Runtime . 101

8.3.4 Example Solution . 101

8.4 Shop Keeper Textual DSL Input . 105

8.5 Contributions to the Multi-objective Next Release Problem 107

8.6 Summary . 108

9 Scheduling Acquisitions Through Life 109
9.1 Introduction . 109

9.2 Through Life Extension to CATMOS . 109

9.3 CATMOS technique modifications . 110

9.4 Through Life Extensions to the CATMOS Domain Specific Language 113

5

9.5 Military Acquisition Scenario - Case Study . 120

9.5.1 Scenario . 120

9.5.2 Baseline Assessment . 122

9.5.3 Acquirable Systems . 124

9.5.4 Military Acquisition Scenario - Textual DSL Input 124

9.5.5 Runtime Information . 125

9.5.6 Results . 125

9.5.7 Case Study Conclusions . 130

10 Implementation Details 131
10.1 Overview . 131

10.2 Front end . 131

10.3 Back end . 133

10.3.1 Back end Performance . 133

10.3.2 Metamodel in C++ . 134

10.3.3 NSGA-II . 134

10.3.4 Scheduler . 134

10.3.5 Scripting . 136

10.4 NSGA-II Genetic Algorithm - Implementation Details 137

10.4.1 Custom Population Initialisation . 137

10.4.2 Custom Population Initialisation - Prolog Code 137

10.4.3 Phenotype Evaluation Algorithm . 139

10.5 Metamodel Explanation . 141

10.5.1 Run Configuration . 141

10.5.2 Find Trade-offs . 141

10.5.3 Through Life Planning . 142

10.5.4 ComponentU . 142

10.5.5 Existing Component . 142

10.5.6 Acquirable Component . 142

10.5.7 Desire Low . 142

10.5.8 Desire High . 142

10.5.9 Budget . 142

10.5.10 Capability . 143

10.5.11 Component . 143

10.5.12 Cost . 143

10.5.13 Measurement . 144

10.5.14 QualitativeValue . 144

10.5.15 CapabilityUpgrade . 144

10.5.16 QualitativeValueDictionary . 144

10.5.17 Summary . 144

6

11 Evaluation & Conclusions 145
11.1 Summative Evaluation Argument . 145

11.2 CATMOS Technique - Efficiency . 148

11.2.1 Experimental Setup . 148

11.2.2 Algorithm Complexity Analysis . 148

11.2.3 Parallelisation Discussion . 149

11.3 The CATMOS Technique Benefits . 150

11.4 The CATMOS Technique Limitations . 151

11.5 Relationship with other research in the existing research fields 151

11.6 Conclusions . 153

11.7 Future Work . 153

11.7.1 Graphical Improvements . 153

11.7.2 Case studies . 154

11.7.3 Sensitivity Analysis . 154

11.7.4 Probability Density Functions . 154

11.7.5 Scalability . 154

A Xtext Grammar Definition 155

B Military Case Study - Textual DSL Input 161
B.1 Military Acquisition Scenario - Lua Script . 169

Glossary 171

7

List of Figures

5.1 Example function f(x) with local and global optimum 46

6.1 The Capability Management Problem Overview 52

6.2 The Through Life Capability Management Problem Overview 54

6.3 The CATMOS technique in the field of acquisition 56

7.1 CATMOS Conceptual Metamodel . 65

7.2 Tea Making Example, Goal tree and Component models 72

7.3 Tea Making Example, Completed Goal Model 73

7.4 Tea Making Example, Additional solutions generated from the same problem de-

scription . 74

7.5 FindTradeOffs Block Grammar . 75

7.6 Capability Block Grammar . 76

7.7 Component Block Grammar . 77

7.8 Qualitative Value statement . 78

7.9 Tea Making Case Study - Pareto Front . 81

7.10 Component Block Grammar . 86

8.1 Pareto Optimality Example . 90

8.2 Flowchart for the CATMOS technique . 92

8.3 The CATMOS Technique - Applying Upgrades 95

8.4 Double Point Crossover - Example . 96

8.5 Shop Keeper Example - Pareto Front of Satisfaction vs. Cost 102

8.6 Example Goal Model Solution . 103

8.7 Shop Keeper Example - 3D Pareto Front . 103

8.8 Pareto Front For MONRP 100 Customers 200 Requirements 104

9.1 Flowchart for the CATMOS technique with Through Life parts included 112

9.4 ThroughLifePlanning Block Grammar . 113

9.2 Through Life MONRP - Example Generated Capability Over Time Graph 114

9.3 Through Life MONRP - Example Generated Gantt Chart 115

9.5 Capability Block Grammar - Through Life . 116

9.6 Component Block Grammar - Through Life . 117

9.7 CATMOS Full Meta-Model - Acquisition Settings 118

9.8 CATMOS Full Meta-Model - Capabilities and Components 119

8

9.9 Military Acquisition Scenario Case Study Objectives 121

9.10 Military Scenario - Baseline Capability Over Time 123

9.11 Military Scenario - Scenario Capability Over Time 126

9.12 Military Scenario - Scenario Gantt Chart . 127

9.13 Military Scenario - Scenario Simplified Goal Model 128

9.14 Military Scenario - Pareto Front of Overall Capability vs. Overall Costs 129

10.1 Prototype Tool Architecture Overview . 132

10.2 CATMOS Technique Full Meta-Model - Acquisition Settings (Repeated) 134

10.3 CATMOS Technique Full Meta-Model - Capabilities and Components (Repeated) 135

11.1 Example: Mapping CATMOS Goal Models to Normal Goal Models 146

11.2 MONRP - Problem Size Against Time Taken 149

9

List of Tables

6.1 Tea Temperature Capability . 58

6.2 Tea Flavour Capability . 59

6.3 Insulation Quality Capability . 59

7.1 Comparison between Goal modelling and the CATMOS technique. 64

10.1 Functions made available by the prototype tool to Lua 136

11.1 Timing Results For The MONRP Problem in the CATMOS prototype tool 148

10

Acknowledgements

Firstly, I would like to thank my two academic supervisors Richard Paige and Simon Poulding

for their provision of support, advice, guidance, feedback and ‘word smithing’ throughout the

EngD programme. I’m grateful to my two industrial supervisors Simon Smith & Dick Whittington

for provided me with such an interesting research topic to work on.

I would like to thank my internal examiner Rob Alexander for providing general guidance on

shaping the research and tales of experience from his PhD and thank my external examiner Tony

Clark for suggesting improvements to the thesis. I would also like to thank my family and friends

for their continuing support.

Lastly, I appreciate the organisation of the Large Scale Complex IT System programme for

allowing me to meet such talented researchers from across the country and further abroad.

11

Author Declaration

Except where stated, all of the work contained in this thesis represents the original contribution

of the author.

Parts of the work described in this thesis have been previously published by the author in:

• F. Burton, R. Paige, S. Poulding, and S. Smith, “System of systems acquisition trade-offs,”

in 2014 Conference on Systems Engineering Research (CSER 2014), Mar. 2014. [1]

• F. R. Burton and S. Poulding, “Complementing metaheuristic search with higher abstraction

techniques,” Proc. 1st International Workshop on Combining Modelling and Search-Based

Software Engineering, 2013. [2]

• F. R. Burton, R. F. Paige, L. M. Rose, D. S. Kolovos, S. Poulding, and S. Smith, “Solv-

ing acquisition problems using model-driven engineering,” in Modelling Foundations and

Applications, pp. 428 - 443, Springer, 2012. [3]

Parts of the work described in this thesis have been previously published with the author acting

as a secondary contributor in:

• J. R. Williams, F. R. Burton, R. F. Paige, and F. A. Polack, “Sensitivity analysis in model-

driven engineering,” in Model Driven Engineering Languages and Systems, pp. 743 - 758,

Springer, 2012. [4]

The author provided as a secondary contribution to the paper, the Capability Acquisition Tech-

nique with Multi-objective Search (CATMOS) prototype tool, the application of the CATMOS

prototype tool to the Airport Crisis Management Scenario and assistance in both using the CAT-

MOS prototype tool and in interpreting results generated by the primary author’s sensitivity anal-

ysis.

• R. F. Paige, P. J. Brooke, X. Ge, C. D. Power, F. R. Burton, and S. Poulding, “Revealing

complexity through domain-specific modelling and analysis,” in Large-Scale Complex IT

Systems. Development, Operation and Management, pp. 251 - 265, Springer, 2012. [5]

The Through Life Capability Management section of the paper summarises some of the origi-

nal research shown in this thesis done by the author.

12

Chapter 1

Introduction

1.1 Motivation

Large organisations tend to have multiple organisational goals. For example, an organisation that

performs search and rescue might want to be able to search large areas quickly, and provide speedy

recovery to survivors. To satisfy such goals, organisations will acquire different resources (such

as new systems, training programmes, infrastructure and processes) that when combined may go

some way towards achieving them.

For large organisations, a set of goals may be satisfied - to varying degrees - by any one of a

large number of potential resource combinations. This makes reasoning about the optimal ways

for large organisations to meet their goals, via the acquisition of resources, a difficult and arduous

task. This tends to result in high-level acquisition trade-offs being neglected for being too difficult,

or with only a few of the full range of options being considered. It is also very unlikely that all of

an organisation’s goals will be fully satisfied by any one solution, due to factors such as budgetary

limitations, unavailability of solutions and general problem complexity, meaning that in practice

trade-offs are necessary. This thesis presents a model-based technique for allowing organisations

to reason about the trade-offs involved during such acquisitions to enable more efficient decision-

making.

Acquisition problems are made difficult by a number of characteristics. One of these is that

the resources involved can be heterogeneous. For example, new equipment, new training pro-

grammes, new organisational structures, new infrastructure, etc. may all be part of a solution for

an acquisition problem. To perform high-level acquisition trade-offs, comparisons needs to be

made between these different types of resources, which traditionally are considered to be incom-

parable. How does one compare the benefits of a new piece of equipment against the benefits

of using a new organisation structure? Another characteristic is the management of the multi-

objective nature of the problem, with different organisational goals competing with each other

over the limited acquisition resources. How does one support decision makers in making trade-

offs between competing organisational goals? There is also a temporal aspect of the problem with

the overall satisfaction of the organisational goals needing to be maintained through-life, as the

individual systems in the organisations are retired and new systems introduced.

This thesis is motivated by two sources. The first source is the Large-scale Complex IT System

programme [6]. The aim of this programme is to provide insight into the problems faced by Large-

13

scale Complex IT Systems (section 1.1.2) development. This thesis deals with the acquisition of

Large-scale Complex IT Systems, which due to the underlying nature of the problem is similar

to the acquisition of Large-scale Complex Systems in general. The second source is the UK

Ministry of Defence’s transition to Through Life Capability Management (TLCM) (section 1.1.1)

[7], an acquisition technique designed to deal with Large-scale Complex System procurement [8].

With the UK Ministry of Defence’s push towards Network Enabled Capability (NEC) [9, 10] it is

intending to use TLCM as an enabler for Large-scale Complex IT System acquisition [9–12].

The thesis presents a technique that deals with multiple competing organisational goals, eval-

uating trade-offs in acquisition over limited resources, the heterogeneous nature of the involved

resources and scheduling acquisitions through life. This will be discussed further in the following

sections.

1.1.1 Through Life Capability Management

The UK Ministry of Defence has recently switched to Through Life Capability Management

(TLCM) for managing its military acquisitions [13]. Previously, the UK Ministry of Defence used

Through Life Management (TLM) for managing its military acquisitions [13]. Before discussing

TLCM, we consider both TLM and the issues that lead to the transition.

Through Life Management (TLM) involves the periodical updating of all equipment/platforms

in the UK Ministry of Defence [13]. When a piece of equipment/platform nears the end of its

lifespan, TLM ensures that a new replacement equipment/platform will be acquired on time to

replace it [13]. The limitation of this technique is that it is heavily equipment focused; this has led

to serious and high profile problems for the UK Ministry of Defence [13]. A recent example is

the acquisition of the Apache helicopter fleet, which was acquired on time to replace the existing

helicopter fleet. However, the supporting training programmes for teaching pilots how to fly the

Apache helicopter were delivered late [7,14]. This resulted in a large number of the newly acquired

helicopters being grounded. The UK Ministry of Defence needed to pay to maintain the existing

helicopter fleet in service and pay again to keep the Apache helicopters in storage, leading to £19.9

million in additional costs [7]. Similar problems have occurred in the delivery of the Bowman

radio system and the nuclear submarines jetties where either the proper training or infrastructure

was not provided [7].

This has led to growing recognition within the UK defence community that acquisition should

be carried out with respect to military capabilities [15]. Military capabilities are the abilities that

the acquired assets of the UK Ministry of Defence provide to front line military commanders [7].

Military capabilities are created from compositions of heterogeneous resources, categorised by

the Defence Lines of Development (DLoD) [12, 16]. The Defence Lines of Development are

Training, Equipment, Personnel, Information, Doctrine and Concepts, Organisational Structures,

Infrastructure and Logistics [17]. The intention of TLCM is to deal with the same issues as TLM

but to consider them across all of the DLoD [7].

The transition to TLCM has the potential to enable new opportunities. One of these comes

from acquisition in terms of capability rather than equipment, which in turn allows consideration

of alternative solutions to military problems. For example, previously, an acquisition problem

could be expressed in terms of acquiring a scouting tank. The purpose of a scouting tank is to

14

go to the front lines and scout the enemy positions so that other tanks can fire on their locations.

When the acquisition is rewritten in terms of capability, this becomes not the acquisition of a

scouting tank but the acquisition of a scouting capability. This allows the consideration of new

types of solutions for providing the capability, specifically those that are not tanks. For example

an Unmanned Aerial Vehicle could also be used to gather the necessary information for scouting

at a cheaper price and without placing the life of the driver of the scouting tank in danger. 1

The use of capabilities rather than equipment as the principal concept of TLCM allows con-

sideration of high-level acquisition trade-offs. These types of high-level trade-offs at the system

of systems level can lead to much better capabilities being acquired at potentially reduced cost.

These types of high-level trade-offs are the focus of this thesis.

Before this opportunity can be taken advantage of, there are some unsolved problems to be

addressed. In TLCM the heterogeneous resources that can be acquired to produce military capa-

bilities are categorised by the Defence Lines of Development (DLoD) (section 2.3) [12, 16]. The

relationship between the DLoD and military capabilities is known to be many to many [12]. That

is to say that the same military capabilities can be produced from different combinations of re-

sources and the same combinations of resources, give rise to multiple military capabilities. The

actual relationship between the two - how to go from military capabilities to heterogeneous re-

sources in the DLoD or vice versa - is undefined and is an unsolved problem within TLCM [12].

An implication of TLCM is that the heterogeneous resources from the DLoD are comparable in a

meaningful objective way; this is to say that the acquisition of a new piece of equipment can be

compared objectively to the acquisition of a new organisation structure or the acquisition of a new

training programme, etc. By objective it is meant that there should be a structured method for per-

forming the comparison rather than guess work. This is because all of the resources in the DLoDs

can be purchased using the same resource (money) and all effect the produced capabilities. How

to perform such a comparison is open research question and has been referred to as the ‘Apples

and Wednesdays’ problem [18]. The name is reflective of the type of problem involved: how does

one compare the benefits of having more apples to the benefits of having more Wednesdays? A

major contribution of this thesis is the provision of a technique to partially address this problem.

Due to the many-to-many nature of the relationship between military capabilities and the

DLoD, there can be multiple valid solutions in fulfilling any set of military capabilities. Each

solution using different combinations of heterogeneous resources to achieve the same effect at dif-

ferent costs. Solutions can even achieve different fulfilment of the various military capabilities at

different costs, leading to a complex trade-off space.

Another unsolved problem is within the through life management of capabilities. A problem

that occurs within in the UK Military is that when components in the DLoD are retired from ser-

vice and new components in the DLoD come into replace them, there can be capability gaps [16].

Capability gaps arise when military abilities are lost and certain military operations cannot be car-

ried out until the replacement resources are fully acquired. This usually results in incurring costs

to either maintain the old components or alternatively incurring costs to speed up the acquisition

of new components [16].

Currently, partly due to the timescales of military acquisition (which can be in the decades),

1Private discussion at the Integrated Enterprise Architecture Conference 2010

15

whether the concept of TLCM is an improvement over the previous acquisition paradigm is still

mostly unproven. However after the Enabling Acquisition Change Report [7] in 2006 on the ability

of the UK MoD to adopt TLCM, work has now started on the adoption of TLCM by the Ministry

of Defence [19].

1.1.2 Large-scale Complex IT Systems

The Large-scale Complex IT System research initiative [6, 20] studies the unique issues found

in large-scale complex IT systems due to their scale and complexity. This thesis falls under this

research programme. Though Life Capability Management (TLCM) is a technique for performing

generic large-scale system acquisitions and through it has a military motivation, it is not military

specific.

The UK Ministry of Defence is attempting to use TLCM for the purpose of acquiring new

large-scale IT systems under its Network Enabled Capability (NEC). It is recognised that the IT

systems cannot be gained in isolation from the other Defence Lines of Development [9, 11, 12].

At the system of systems level it is no longer sufficient to consider IT systems in isolation from

the other components they interact with. Capability-based acquisition is a system of systems

problem [12].

1.1.3 Relationship to Early Requirements Engineering

The capability management part of TLCM has an analogue within the field of goal driven require-

ments engineering.

A capability from TLCM is similar to the concept of a goal from goal driven requirements

engineering. Both capabilities and goals are desired abilities and can be decomposed and satisfied

by components. A technical difference is that a capability must have associated benchmark mea-

surements [8] to describe how well a solution satisfies the capability; a goal may have associated

benchmark measurements. For all intents and purposes they are very similar concepts, suggesting

that capability is not military specific.

The similarity extends further. The National Air Traffic control in the UK, who are using

capability-based acquisition, have introduced a “new” concept called a Hazard for their work 2.

The Hazard concept already exists in KAOS [21] goal modelling under the name of an Obstacle.

In capability-based acquisition, the capabilities are eventually satisfied by the acquiring things

categorised by the DLoD. In goal driven requirement engineering, goals are similarly satisfied by

acquiring things categorised by systems, processes and people. These categorisations have sub-

stantial overlap. Systems is equivalent to equipment and infrastructure from the DLoD, people is

equivalent to people and training from the DLoD and processes is equivalent to doctrine, concepts

and logistics from the DLoD. The choice of categories makes no significant difference; it is done

merely to indicate the types of things that are likely to be acquirable in the acquisition solutions

and help structure solutions.

There are multiple styles of goal modelling. The most similar approach to capability-based

acquisition is KAOS [21] goal modelling, because it considers the goals to belong to the system

2Private discussion with National Air Traffic control

16

as a whole rather than to individual actors (like i* [22]). A major difference is that KAOS has

formal underpinnings for verifying its goal models are internally consistent, whereas capability-

based acquisition is supported by architecture frameworks such as MODAF [23] for verifying its

solutions against the actual problem.

The high-level trade-offs being researched in this thesis correspond to the evaluation of alter-

native goal tree derivation paths in goal modelling. While alternative goal tree derivation paths has

been recognised as a research area by Lamsweerde [24], the work that has been done in this area

is minimal. As a consequence of solving the research gaps in terms of TLCM, the research will

also be addressing most problems of alternative goal tree derivation in the field of goal modelling.

1.2 Formal Statement of the System of Systems Acquisition Trade-
off Problem

This thesis is addressing problems found in the acquisition of system of systems, largely moti-

vated by the challenges facing the UK Ministry of Defences Armed Forces. The Australian and

Canadian militaries have similar acquisition programmes using similar concepts but with different

terminologies [25, 26].

In this thesis, we will be considering the system of systems acquisition problem using the

perspective of TLCM, which is a major approach being used to address system of systems acqui-

sition in practice [7], and therefore encounters the major common problems of system of system

acquisition.

A large organisation engages in various scenarios representing what it does or what it wants

to do. From these scenarios, the abilities required to be able to perform the scenarios are called

capabilities (section 2.2).

Capabilities can be satisfied in various ways that (for military acquisition) are categorised by

the Defence Lines of Development (DLoD). The categories are: training, equipment, personnel,

information, doctrine and concepts, organisation, infrastructure and logistics [17]. These DLoD

come together to satisfy the capabilities to some degree. The relationship between the DLoD and

capabilities is known to be many to many but the exact relationship is unknown [12].

The acquisition decision makers aim to increase the satisfaction of existing capabilities of

the organisation or add new capabilities to the organisation as new needs arise. To do this, the

acquisition decision makers have to decide what things, from the various DLoD, to acquire. Some

of the desired things will be acquired in-house, and acquisition of other things will be contracted

out to various vendors. The acquisition is likely to be brown-field, and as such the decision makers

should consider if existing systems have the potential to be used together with new systems to

produce the wanted capabilities when formulating their acquisition solutions.

There is a finite budget available for these acquisition programmes, which is received over

time. As such, the various acquisition options will need to be considered and some trade-off

between satisfying the various capabilities with respect to the limited resources will need to be

established. For simplicity, we will refer to the things that can be acquired from the DLoD as

components from now on. There are complex dependencies between the various components that

can be acquired. Some components cannot be acquired without acquiring other components and

17

some components need to work together with other components to provide the wanted capabilities.

The acquisition decision makers need to decide which components to acquire and what trade-offs

to make in doing so.

The acquisition decision makers also need to manage the acquisitions through life. This means

considering how the acquisition of the chosen components will be scheduled considering bud-

getary limitations, dependencies between programmes and needs for having capabilities at dif-

ferent times. These considerations can affect the initial choices of which components to acquire.

Changes in capability must be carefully managed to prevent capability gaps from forming, where

certain capabilities cannot be used because systems have been retired and the replacement systems

have not yet been introduced. Capability gaps may in some cases be acceptable; in other cases

they need to be identified in advance so arrangements can be made to cover the gap; and in all

cases it is desirable to be aware of when the capabilities gaps will happen to allow appropriate

action to be taken.

The overall aim of the thesis is to provide techniques for helping decision makers address the

problem of system of system acquisition trade-offs. The first research gap focuses on the missing

link between the DLoD and capabilities, the second research gap deals with all the problems

stated but without consideration of the time and scheduling, while the third research gap deals

with adding time and scheduling to the technique.

The main challenges are as follows:

1. Going between the concrete concepts of the things in the DLoD to the very abstract notions

of military capability.

2. Providing a technique that can manage the complex dependencies between the various

DLoD.

3. Making trade-offs between satisfying the various capabilities whilst considering the com-

plex dependencies between the various DLoD and also considering the budgetary limita-

tions.

4. Handling the brownfield nature with existing systems already in place.

5. Attempting to manage these challenges not just in a single one-off acquisition but instead

managing it in a continuous acquisition that takes place over long time periods.

Challenges 1, 2 & 4 are covered by research gap 1, challenges 1, 2, 3 & 4 are covered by

research gap 2 and challenges 1, 2, 3, 4 & 5 are covered by research gap 3. The research gaps are

presented below.

1.3 Research Gaps

There are three significant research gaps that this thesis will address:

18

1.3.1 Research Gap 1 - Bridging the gap between the Defence Lines of Development
and Military Capabilities

There is currently no objective method that works for mapping the programmes in the Defence

Lines of Development (DLoD) to the capabilities that they can produce. The current state of the

art in the field is no more advanced than using weighted sum [18,25], which by trivial inspection is

known to be incorrect. Therefore, this thesis will provide a working objective technique for map-

ping the Defence Lines of Development (DLoD) to capabilities. This is conceptually equivalent to

solving the Apples and Wednesdays problem from the UK military acquisition community [18]:

An example of this problem is whether it would be preferable to acquire a new piece of equipment

or a new organisational structure. Both cost money to acquire, and when they have been acquired

they will contribute to the overall military capability; and so it should be possible to decide which

of the two is the best to acquire. Without first establishing the link between the DLoD and military

capabilities, there is no apparent way to compare them because they are two completely different

types of things.

1.3.2 Research Gap 2 - Multi-objective Acquisition Trade-offs

The second research gap is addressing the multi-objective nature present in this type of acquisition

problem. The different stakeholders involved in the acquisition have different goals and there is

only a limited amount of resources that can be used during the acquisition. This means in practice

that some of the stakeholders’ goals will not be fully satisfied by the acquisition. Our approach

will not identify which stakeholder’s goals should be met and which should be abandoned, but

instead will support decision makers to effectively explore the various possible trade-offs between

the individual stakeholder’s goals and the overall costs involved.

1.3.3 Research Gap 3 - Scheduling Acquisitions Through Life

The third research gap is focusing on the through life part of TLCM. Capabilities need to be

maintained over time and capability still needs to be maintained during the retirement of existing

resources and the acquisition of new resources to replace them. This research gap addresses how

the acquisitions should be scheduled over time and how to identify possible capability gaps before

they occur.

A capability gap is where for a short period of time capabilities are no longer functional due to

the retirement of existing resources, which have yet to be replaced [16]. There is a need for these to

be identified in advance to allow decision makers the ability to either accept the loss of capability

during that time window or to extend the lifespan of existing resources or to provide temporary

replacement resources or to hurry acquisition of new resources to deal with the capability gap

[16]. The technique presented in this thesis needs to provide support for allowing the acquisition

decision makers to identify these situations in advance.

19

1.4 Research Objectives and Research Hypothesis

Large organisations acquire system of systems over time to fulfil their organisational goals. System

of systems are by necessity composed out of smaller systems that can either be pre-existing within

the organisation, off the shelf from vendors or custom made for the organisation’s specific needs.

Large organisations can choose from multiple options when selecting these systems to be included

within their system of systems and there are multiple valid combinations of systems that can fulfil

the same needs in different ways.

The specific combination of systems selected by an organisation for inclusion within their

system of systems affects the levels to which their organisation needs are fulfilled. It also affects

the total cost that the organisation incurs in meeting its needs.

This is further complicated by the temporal aspects of system of systems acquisition, with

systems composing the system of systems retiring and coming into active service through life

changing the satisfaction of the organisational needs over time. It is additionally complicated by

the heterogeneous nature of these systems as illustrated by the DLoD (section 2.3).

The aim of this thesis is to provide techniques (with prototype tool support) for decision mak-

ers to be able to explore and manage the trade-off space between the satisfaction of the different

organisation goals and the costs incurred, whilst also considering the through life element of the

problem. Additionally, the technique is validated against a realistic case study.

The research hypothesis of this thesis is: The high-level trade-off decision space during sys-

tem of systems acquisition can be effectively explored using a technique that generates an approx-

imation of the Pareto front of the fulfilment of the various organisational objectives against the

resources used in the context of acquiring systems for the system of systems.

Each point on the generated approximation of the Pareto front is supported by a goal model that

presents the corresponding acquisition plan in an objective and justified manner to the acquisition

decision makers. For the context of this thesis, objective means that a structured method has been

used and justified means that there is an argument for making the claim that the organisational

goals have been satisfied by the acquired systems.

The technique draws upon research done in the fields of goal modelling, search based soft-

ware engineering and model-driven engineering. The technique also supports the scheduling of

acquisitions over time.

A Pareto front is a well-established concept in the field of economics (created by Vilfredo

Pareto). A Pareto front is the set of solutions that are Pareto optimal. A solution is Pareto optimal

when there is no other solution that is strictly better than it for all objectives. When performing

trade-offs only the solutions on the Pareto front need to be considered as all other solutions are

worse than a solution that is on the Pareto front. Pareto optimally is further explained in section

8.1.

20

1.5 Capability Acquisition Technique with Multi-Objective Search
(CATMOS)

This thesis presents a new technique called Capability Acquisition Technique with Multi-Objective

Search (CATMOS). CATMOS takes in a description of a system of systems acquisition problem in

the form of a top-level goal model and takes in descriptions of the possible satisfying components;

both existing and acquirable. The descriptions of the possible satisfying components contain the

capabilities the components provide, the component’s dependencies on other components and the

component’s costs to acquire. This can be further annotated with scheduling information on when

the component is in-service for or how long it will take to acquire and how long it will be in service

for after it has been acquired and when the costs for the component will need to be paid and if

there are maintenance costs that need to be considered.

Using the basic annotations CATMOS produces an approximation of the Pareto front of the

desired capabilities against the costs. Each point on the Pareto front is supported by a goal model

that shows the acquisition plan for that trade-off, the components involved and how they work

together to satisfy the desired capabilities. An approximation of the Pareto front is produced since

it is computationally infeasible to produce the actual Pareto front on non-trivial problems. This

part of the technique is used for satisfying research gaps 1 & 2.

With the further annotations, CATMOS can schedule the acquisition plans and take account

of whether the plans satisfy the desired capabilities during the time they are wanted in evaluating

plans given both the budgetary and time limitations. When used like this CATMOS produces the

Pareto front and goal model for each point like before but further produces for each acquisition

plan a capability over time chart that shows how the satisfaction of the various capabilities varies

over time and a Gantt chart showing when each component is acquired. This part of the technique

is used for satisfying research gap 3.

The CATMOS technique is presented in chapters 7, 8 & 9. The basic ideas behind the tech-

nique are introduced in chapter 7, the application of multi-objective search is explained in chapter

8 and the through life scheduling of acquisition plans is explained in chapter 9.

1.6 Novel Contributions in this thesis

The research sits between the research fields of through life capability management, goal mod-

elling, search-based software engineering and model-driven engineering. The research contributes

a number of novelties to and between these fields including:

• Alternative Goal Tree Derivation. The research provides an effective way to perform al-

ternative goal tree derivations. For a single acquisition problem, hundreds of thousands of

alternative goal tree derivations corresponding to different solutions can be effectively ex-

plored. There is little existing research in the area of alternative goal tree derivation [24] and

the research that does exist can only explore two or three alternative goal tree derivations at

once.

• Finding Trade-offs using Goal Models. Following on from the alternative goal tree deriva-

tion contribution, there is no existing work that automatically finds the alternative goal tree

21

derivations that represent the best trade-offs that the decision maker can make. This allows

the decision maker to effectively explore the various high-level trade-offs that can be made.

• Combining Goal Models with Multi-objective Search. The research combines techniques

from the acquisition community (goal modelling) with techniques from the search based

software community (multi-objective search) to produce a novel technique that addresses

the research gaps.

• Through Life Scheduling Support on Goal Models. The research provides a technique that

allows the management of through life constraints and issues that appear in goal modelling

when applied to the system of systems problem. For example, dealing with systems in the

goal-model retiring and needing other new systems to be introduced to cover the capability

gap. It also provides the ability to schedule dependencies both sequentially and in parallel

with each other for acquisition and to consider through life costs against a limited budget.

• Automatic Evaluation of Dynamic Goal models. The technique presented in this thesis auto-

matically generates alternative goal tree derivations and then these alternative goal trees are

automatically evaluated. There is no existing work that attempts to automatically evaluate

a dynamically generated goal tree. The closest work is by Letier & Lamsweerde [27] that

assumes a single static goal tree structure and their evaluation is carried out manually.

• Objectively bridging the gap between the Defence Lines of Development and capabilities.

The approach provides a valid working technique for translating between acquisition pro-

grammes within the Defence Lines of Development and the produced capabilities or vice

versa. Previous objective techniques are known not to work (see section 4.4). Addition-

ally, this helps address the ‘Apple’s and Wednesday’s’ problem, which is an open research

problem [18].

• Quantification of goal modelling agents. In goal modelling, agents are derived to satisfy

goals. In the technique presented in this thesis, this is further extended to allow multiple

copies of the same agent to work together to satisfy goals that cannot be fulfilled by single

agents alone.

• Identifying the equivalent between Capability Based Acquisition and Goal Modelling. One

of the first contributions of this thesis was identifying that capability-based acquisition and

goal modelling contain equivalent concepts and ideas under different terminologies.

The technique was applied to the simpler problem of the Multi-objective Next Release Problem

(MONRP) as a case study. This was done in published work [3] by the author and is also shown

in section 8.3. The technique was shown to offer a number of contributions to the MONRP. The

full details of these are given in section 8.5 but in summary the main advantages of our technique

(on the simpler problem of the MONRP) are:

• Continuous Release Support. Existing work on the MONRP considers either a single release

or a few set release dates. Our technique includes support for handling continuous software

releases. [3]

22

• Visualisation. An identified issue in the MONRP is to explain to the stakeholders why a

found solution is good [28]. Our approach adds partial support for this by allowing the

generated solutions to be visualised and presented to the stakeholders [3].

• Continuous variable requirements. Our approach to the MONRP allows the usage of con-

tinuous variable requirements in MONRP. [3]

1.7 Thesis Structure

The next chapter introduces some of the major concepts that are used during the thesis. Chapter

three, problem discussion, covers the literature surrounding the problem of system of systems and

military acquisition. The fourth chapter, current practice, covers literature on existing solutions

that are being currently used to address this problem today. The fifth chapter, applicable research

fields identifies relevant techniques that could be used to address the research gaps. The sixth

chapter, explains the problem in more detail and shows an application of some the existing work in

the field on the problem. The seventh chapter introduces a technique for bridging the gap between

the DLoD and capabilities. The eighth chapter deals with performing multi-objective trade-offs

and performs a case study on the MONRP. The ninth chapters deals with the through life aspect

of the problem, performs a case study on a realistic military scenario and summarises how the

presented technique relates to other research. The tenth chapter deals with the implementation

of the technique’s prototype tool. The last chapter evaluates the work, concludes, and provides

insights to future paths of research.

1.8 Research Context

This thesis is for an Engineering Doctorate in Large-scale Complex IT Systems. The Doctorate of

Engineering is similar to the Doctorate of Philosophy in that it contains a research component of

the same length as the Doctorate of Philosophy. However the research component has an additional

requirement to have an engineering focus in that it solves real problems found in industry.

Therefore this research project is being taken out under guidance from MooD International.

The nature of solving real industrial problems almost always by necessity requires taking a cross

disciplinary approach. Instead of contributing to a single academic field, the research performed in

this thesis contributes to multiple academic fields and uses solving the industrial problem as the fo-

cus. The research fields used by this thesis are goal modelling, search-based software engineering,

model-driven engineering and through life capability management.

This thesis has been funded by the MooD International and by the Engineering and Physical

Sciences Research Council under grant number EP/F501374/1 as part of the Large-scale Complex

IT Systems programme.

23

Chapter 2

Literature Review - Introduction to the
Terminology

2.1 Introduction

This chapter will give definitions for some of the key concepts that will be used in the thesis. This

chapter is only an introduction to the key concepts and aims to provide basic definitions to help

the reader understand the key concepts. Most of the key concepts will be explained in more detail

in subsequent chapters.

First the concept of capability is defined and described to show how it can be used as an ab-

straction. We then summarise the key implications for the use of the concept of military capability

during acquisition. This is followed by an explanation of the DLoD and definitions for each of

the lines of development. Then, Measures of Performance (MoP) and Measures of Effectiveness

(MoE) and the differences between the two are explained. Lastly, the concept of a model is de-

scribed for use later on in the thesis.

2.2 Capability

The Oxford Dictionary defines capability as:

“capability noun (pl. capabilities) (often capability of doing/to do something) the

power or ability to do something: he had an intuitive capability of bringing the best

out in people — the company’s capability to increase productivity.

• (often capabilities) the extent of someone’s or something’s ability: the job is

beyond my capabilities.

• a facility on a computer for performing a specified task: a graphics capability.

• forces or resources giving a country the ability to undertake a particular kind of

military action: their nuclear weapons capability.” [29]

The notion of capability being used in this research project is the “extent of someone’s or

something’s ability” [29]. Capability is an interesting abstraction for system engineering. A sim-

ple way to explore this abstraction is to look at the graphics capability example from the definition.

The term graphics capability implies there is some way available to display graphics. The abstrac-

tion leaves two things undefined about the way to display graphics. Firstly, what is providing the

capability is left out; in this case it could be the composition of several components of a computer,

e.g. the graphics card, the motherboard, the software driver, the CPU, etc. However, none of these

components will give a usable graphics capability on their own. Secondly, the intended applica-

tion of the capability is not defined. In this case it may be to edit pictures, play 3D games, make

movies, etc. An issue with this abstraction is how do we measure the quality of the capability we

have. A hypothetical graphics card may be good at rendering 3D animations but bad at rendering

2D movies. This suggests that capability needs to be measured within the context of the capabil-

ities intended use. Capability is also restricted by its environment because the components which

make up the capability function only under certain constraints, so in this example the motherboard

may only function between 0◦c - 30◦C. The other thing to note is that for a capability to be used it

needs to have some embodiment, in this example the computer. In the case of military capabilities

this is Force Elements, which are the military units that are assembled out of the things that are

acquired [30].

2.3 Defence Lines of Development

The Defence Lines of Development (DLoD) are categories of components that when composed

together produce military capability [12, 16]. The relationship between the components in the

DLoD and the military capabilities is known to be many to many [12]. The importance of the

DLoD is that they describe the full breadth of the things that may be acquired during system of

systems acquisitions.

The UK MoD Defence Lines of Development (DLoD) [17] are, in summary:

• Training - The means to facilitate the practical learning of military doctrine.

• Equipment - Systems, platforms and weapons.

• Personnel - The supply of capable and motivated people.

• Information - Information is considered to be data when applied with context to a situation.

Data is considered to be merely raw facts without meaning.

• Doctrine and Concepts - Doctrine are the principles used to guide military forces and in-

cludes the current methods for performing military activities. A concept is a new idea on

how to perform a military activity in the future.

• Organisation - “Relates to the operational and non-operational organisational relationships

of people. It typically includes military force structures, MOD civilian organisational struc-

tures and Defence contractors providing support.” [17]

• Infrastructure - The management of permanent buildings, land and utilities.

• Logistics - The planning of and carrying out of the movement and maintenance of forces.

• Interoperability - Handling the interoperability issues that arise between the different DLoD.

25

Through there have been moves by some military contractors to have Industrial Readiness,

which is the ability of industry to supply the wanted DLoDs to the MoD, also included in the

DLoD; this has not been done [16].

The Australian Department of Defence, the American Department of Defence and the Cana-

dian Department of National Defence have their own versions of the Defence Lines of Develop-

ment, which are called the Fundamental Inputs to Capability [31], DOTLMPF [32] and PRICIE

[26] respectively. While they are fairly similar to the DLoD they have slight differences in the way

they have categorised the things that they acquire.

2.4 Measures of Performance

In the TLCM methodology, capabilities are considered to have attached measurements that can

either be Measures of Performance (MoP) or Measures of Effectiveness (MoE) that allow the

abstract capability to be treated in a concrete way [8].

A MoP is a measurement that can be taken on a system of interest directly. It is a measurement

that is independent of any scenario the system may be used in. For example, the distance travelled

by a car on a full fuel tank is a MoP. A military example is the maximum range at which an artillery

piece can fire. MoP describe what systems are capable of doing in a quantifiable manner [33]. MoP

are used in TLCM to describe the performance of systems independently of their performance in

scenarios [8].

2.5 Measures of Effectiveness

A Measure of Effectiveness (MoE) is a measurement that is defined in terms of a scenario and

measures how well a system performs within that scenario [33].

A military example would be the probability that the target fired at by the artillery piece will be

successfully destroyed. This is different from a MoP as it is not a direct measurement of a property

of a system. For example, an artillery piece can have range and destructive power as MoP and a

MoE towards a ‘Long Range Fire’ capability of chance the target is destroyed. High MoP does not

necessary imply high MoE whilst an artillery piece may have high range and destructive power

if it has low accuracy it may still score badly on its MoE of destroying its target. MoE describe

the extent to which a capability meets stakeholder needs [33]. MoE are used in TLCM to describe

how well systems can meet the desired capabilities [8]. Both MoP and MoE are general system

engineering terms rather than being TLCM specific.

2.6 Model

The word model has many possible meanings. The sense of the word model being discussed in

this thesis can be defined as “a simplified description, of a system or process, to assist calculations

and predictions” [29].

Later on in the thesis, we will be reviewing techniques that can be used to create models of

systems and therefore it is important to know the distinction between a model of a system and

26

the system itself. A model is an abstraction of the system and therefore only captures a subset of

the details about system. Having a model of a system is a similar concept to having a map of a

territory. A quote from Alfred Korzybski is that “A map of a territory is not the territory” [34].

The point being that the map can be inconsistent with the territory and because something will

work according to the map does not mean it will work in the territory. The same applies to models

of systems.

Another observation that can be made from the quote is that you can have multiple maps of

the same area of land each with its own purpose. One map may contain the names of towns and

cities build on the land and another may instead contain information on the height of the land. For

a person trying to travel to a certain town the first map is useful and for a person who is attempting

to climb a mountain the second map is useful. However a person who is trying to find a certain

town will not find a height map of the land useful and a mountain climber will find limited usage

in a map without the heights of the land marked. Since the map is not a full description of the

territory it needs to be made with some purpose in mind. The same applies to the modelling of

systems. This issue is considered in work on model validity for use in simulation in that a model

is considered valid with respect to specific purposes [35].

In this thesis, modelling will be used both in the context of goal modelling and in the context

of model-driven engineering. Goal modelling creates a structured argument that acquiring certain

systems, people or process will satisfy an organisations goals [21]. A human expert can then man-

ually check a goal model to make sure that the argument it presents is correct [21]. Model-driven

engineering aims to use models instead of code for the development of software systems [36–38].

In this thesis, model-driven engineering techniques and tools are used for the manipulation of goal

models.

2.7 Summary

In this chapter, we have briefly defined some of the key concepts that will be used in the thesis. In

the next chapter, the literature review covers the research into the problem area being studied by

the thesis.

27

Chapter 3

Literature Review - Problem Discussion

This chapter discusses the literature relating to the problem area of large-scale complex system

acquisition. The purpose of this chapter is to help understand the considerations that need to be

made whilst attempting to address the stated research gaps. The chapter begins with discussing

military capability before moving on to TLCM. Then ‘Wicked problems’ by Rittel and Webber

[39] are discussed. ‘Wicked problems’ are important because it describes the issues that face large-

scale acquisition projects and any technique that is created to help address large-scale acquisition

problems should be aware of them. Lastly, for completeness with respect to the TLCM motivations

of the thesis, nature’s equivalent of warfare, competition between species, will be briefly discussed

to determine if there are any lessons that can be learned to aid in human warfare.

3.1 Military Capability

The UK Ministry of Defence is moving from equipment based acquisition to capability-based

acquisition [19]; similar change has been made within the Australian Department of Defence [31].

This is because the previous acquisition techniques, which focused on renewing equipment, had

various short comings due to their heavy equipment focus and ignoring the other DLoD that help

make up military capabilities. This led to high profile failures in the Apache helicopter programme,

Bowman radio system programme and the nuclear submarines jetties programme [7].

With military capability the things that compose the capability are left undefined, as is the

intended use of the capability. This allows multiple and different solutions to be considered in

attempts to meet the capability demands.

As with the definition of capability shown in the previous chapter, military capabilities are

composed from different things, which are identified as the Defence Lines of Development (section

2.3). Recognition is also given to military capability being restricted by the environment in, which

they operate [23]. For example, equipment can stop working in different terrains and climates.

Military capabilities designed for use in the sea are unlikely to be effective in a land locked country

and tanks designed for use on flat land are most likely ineffective on heavy mountainous terrain.

Military capability is physically embodied in Force Elements At Readiness [12].

The Enabling Acquisition Change Report describes military capability needing to be made

from the “most cost effective mix of components” [7], which suggests that cost effectiveness is

part of the motivation for the adoption of capability-based planning. This is getting the most

capability possible for the amount spent.

The more traditional use of the term military capability before its use in TLCM has been sum-

marised by Newsome [40]. Traditionally the term was used interchangeably with the concept of

military power. Newsome classifies the academic theories on military capability as either “power”

theories or “dialectic” theories. In power theories, militaries have some level of power, which can

be determined by looking at the outcomes of wars between military forces. In dialectic theories,

started by Carl von Clausewitz [41] cited in [40], military capability is the amount of military

resources available minus some “friction” that accounts for human factors and other non-material

constraints. [40]

The military capability discusses by Newsome and Carl von Clausewitz is a very abstract and

vague notion of the military’s ability to project its power in warfare. Moving on to Through Life

Capability Management, military capability is considered to be measurable via the use of Measures

of Effectiveness [8]. These are real world measurements that can be taken from a system of interest

in some scenario of interest [33]. For example the distance that an aircraft is able to drop supplies

off to troops without having to refuel or land at an airstrip. These types of military capabilities

are a lot more precise than the earlier uses of the term. Whilst Newsome and Carl von Clausewitz

discuss military capability and Through Life Capability Management gives a way to measure it,

how to actually obtain the military capability is left undefined.

3.2 Through Life Capability Management

Through Life Capability Management (TLCM) is a progression of Through Life Management

(TLM), through the addition of Capability Management [7]. Through Life Management primarily

focused on periodically updating in-place equipment to improve the armed forces [7]. TLCM

extends this by considering all of the Defence Lines of Development (DLoD), rather than just

equipment, and focusing on the capabilities given to the front line commanders that they can use

during their operations [42]. Capabilities are usually created by multiple acquisitions over the

various DLoD [42] (section 2.3) working together to create effective abilities that the front line

commander can draw upon [12, 42].

The Acquisition Operating Framework gives the definition of Through Life Capability Man-

agements as:

“Through Life Capability Management (TLCM) interprets the requirements of De-

fence policy into an approved programme that delivers the required capabilities, through-

life, across all Defence Lines of Development (DLoDs).” [8]

A similar definition is given by McKane:

“TLCM is an approach to the acquisition and in-service management of military ca-

pability in which every aspect of new and existing military capability is planned and

managed coherently across all Defence Lines of Development (DLOD) from cradle

to grave.” [7]

The Enabling Acquisition Change Report [7] is the major report introducing TLCM and dis-

cusses both its ideas and the practicalities of implementing them within the UK Military. The

29

report justifies both the Through Life part of TLCM by stating that it is a common theme in re-

ports on defence acquisition and justifies the capability part of TLCM by highlighting some of

the high profile failures, which have occurred due to purely focusing on the equipment in their

acquisition. The report [7] lists a number of possible advantages of adopting TLCM:

• A single person being able to control the funds for a capability, potentially ensuring a co-

herent delivery across the Defence Lines of Development. Previously, the different parts

(equipment, training programmes, etc.), which work together to create the capability were

controlled by different people.

• The enabling of trade offs between the Defence Lines of Development, potentially leading

to better value for money solutions.

• Upfront investment to potentially gain cost savings in the operating and support costs.

• Opening up the ability to contract for capabilities.

The report also describes as a limitation of TLCM that it can be difficult to take the separately

acquired capabilities and combine them back into force elements for deployment. The reports

states that it is currently hard to create force elements in the Navy and Air force cases where force

elements are based around ships and airplanes and even more difficult in the Army’s case where

force elements are based around people with much less well defined roles. The report argues that

currently even though the ideas of TLCM conceptually has benefits, implementing them at the

moment would be challenging. [7]

The Acquisition Operating Framework [8] gives a summary of the current Through Life Ca-

pability Management process. The process starts with Capability Planning.

In the first stage of Capability Planning, the Head of Capability takes the capabilities desired

by the sponsor and identifies the characteristics of the capability along with making them mea-

surable and solution independent. These are then assigned to Capability Management groups and

Capability Planning groups and interdependences between groups are made clear. [8]

In the second stage of Capability Planning, the vague capability characteristics are decom-

posed into capabilities associated with tangible military effects. Metrics for measuring how well

the military effect has been met are created along with benchmarks in terms of the metrics for the

most demanding expected scenarios. [8]

In the third stage, five different perspectives are considered across the DLoD are considered.

The capability perspective looks at the difference between the current and expected military capa-

bility given the current acquisition programmes. From this, the current acquisition plan is assessed

against the desired military capabilities in stage 2 of the plan to establish the current surpluses and

shortfalls. The research perspective looks at whether the current research programmes are aligned

with capability goals. The industrial perspective looks at the major delivering companies and

identifies problems in the market place. The financial perspective determines what the financial

pressures and constraints are. The commercial perspective looks at existing contracts and brings

to attention the MoD’s commercial position. [8]

In the fourth stage of Capability planning, the second stage, which gives the goals, and the third

stage, which gives the different perspectives, are compared and the shortfalls and opportunities are

30

considered. This can led to the writing of formal options containing the implications of decisions

made in Capability Planning. This can also start an investigation to find generic solutions across

multiple capabilities. [8]

The final stage of Capability Planning, involves prioritising the created options. The next part

of the process is Capability delivery that turns the accepted options into a cohesive programme

and manages the delivery of it. [8]

The capability planning does not however ensure that what is delivered to the front line com-

manders is fully operational. Usually this is not the case and a smaller iterative-based acquisition

process is needed to fill in the gaps of what was missed by the capability planning process. Some

degree of iteration is likely to be necessary for any large-scale acquisitions.

In the UK MoD case this iteration is done via Urgent Operational Requirements (UORs) [43].

UORs are used when current operations find gaps in what is available to the front line. The

main focus in the acquisition of UORs is delivering the requirements quickly hence parts of the

acquisition process are dropped. They are not expected to completely integrate with the rest of the

normal acquisition process and have a residual risk associated to them. [43]

Urgent operation requirements will most likely always be necessary. This is because the

TLCM process relies on the Defence Planning Assumptions, which being assumptions can be

incorrect and incomplete. Errors in assumptions led to there being gaps between what is acquired

and what is required for the real operations undertaken.

3.3 Wicked Problems

Wicked problems were first described by Rittel and Webber [39] in 1973 in the context of plan-

ning problems. Wicked problems are a type of problem that are encountered in the real world.

They tend to have a social nature and the problem tends to therefore have many different aspects

belonging to many different people.

Before we go any further there is the question of what do social planning problems have to

do with the field of defence acquisition or software engineering? One of the main reasons for

building large-scale complex IT systems is the notion of satisfying complex social needs [44].

Both work on building large-scale IT systems [45] and on the problem of defence acquisition [46]

have argued that their fields contain these wicked problems. This is likely to be because both have

a social component to the needs they are addressing. Therefore it would be remiss of us not to

look in the research field of wicked problems for guidance.

There is no real limit on how far the effects of a solution implemented in the real world can

propagate through the social structure of the real world. This means that any scope placed on a

Wicked problem may be missing key parts of the problem. To give an example of such propaga-

tion, it could be imagined that building a library in a small village may result in someone in the

village going on to higher education who then goes on to make some ground breaking contribu-

tion in some research field. Generally these knock-on effects are not considered when considering

whether to allocate funds to building a library in a village. Unfortunately the knock-on effects

of implementing solutions to Wicked problems in the real world are not necessary good and they

can lead to greater problems than the problem that was originally being addressed. Normally,

31

problems being solved by the natural sciences have clearly defined boundaries [39]. Rittel and

Webber [39] classifies these problems as tame problems.

A key difference between tame planning problems and Wicked problems is the formulation

of goals. The difference is observed by a realisation that it is not the inputs to the design of

the system or how the system was designed that matter but instead only the outputs or effects

of the system that matter. This is a change from nouns “What is the system made of?” [39] to

verbs “What does the system do?” [39]. This is clearly the change currently now being made in

defence acquisition 30 years later with the move from Through Life Management to Through Life

Capability Management. [39]

A second key difference between tame and wicked problems is the problem of identifying what

the problem actually is [39]. This is because with the inability to place a boundary on the problem

the possible solutions are endless and each of these solutions can lead to its own problems. The

equivalent to this in the field of IT is that when a solution is implemented it immediately changes

what the requirements are [45]. This is expected to become more common as the size of IT projects

increase [45]. This is mostly likely because the larger the IT project, the more likely the IT project

is trying to tackle some underlying social problem. Large IT projects are often acquired for forcing

some organisational change 1.

In social planning there is a belief of unrestricted malleability by members of the general

public in what can be done [39]. Unrestricted malleability is the view that anything can be done

in solving a problem [39]. Views in a report on challenges in IT [47] also indicate that in IT

projects customers believe that software can do anything. In the case of IT projects it should be

pointed out that real constraints do exist, for example cost, computational limitations, lack of pre-

written libraries for tasks increasing costs, lack of available research, etc [47]. The report states the

limitations tend to be hard for customers to understand due to their abstract and multidimensional

nature [47].

The defining characteristics of Wicked problems according to Rittel and Webber are [39]:

• “There is no definitive formulation of a wicked problem”

• “Wicked problems have no stopping rule”

• “Solutions to wicked problems are not true-or-false, but good-or-bad”

• “There is no immediate and no ultimate test of a solution to a wicked problem”

• “Every solution to a wicked problem is a “one-shot operation”; because there is no oppor-

tunity to learn by trial-and-error, every attempt counts significantly”

• “Wicked problems do not have an enumerable (or an exhaustively describable) set of po-

tential solutions, nor is there a well-described set of permissible operations that may be

incorporated into the plan”

• “Every wicked problem is essentially unique”

• “Every wicked problem can be considered to be a symptom of another problem”

1Private Discussion with Ian Sommerville at LSCITS Social Technical Systems Lecture

32

• “The existence of a discrepancy representing a wicked problem can be explained in numer-

ous ways. The choice of explanation determines the nature of the problem’s resolution”

• “The planner has no right to be wrong”

3.3.1 Proposed solutions

Roberts [48] gives three general coping strategies for Wicked problems:

• Authoritative, where a few stakeholders hold all the power and enforce their view of the

problem and solution.

• Competitive strategies, where multiple organisations attempt to solve the problem separately

using their own view of the problem and the solution. The organisations that defined the

problem ‘correctly’ are successful and the organisations that defined the problem incorrectly

tend to take heavy financial losses.

• Collaborative strategies, where the stakeholders come together and attempt to find common

ground in a solution between them.

Competitive strategies have the benefit that multiple attempts are tried and the most successful

definition of the problem and solution wins. An example for this would be in the creation of any

new product in the commercial marketplace. The companies that successfully determine their

potential customers problems and create products that meet those requirements tend to succeed

while companies that fail to determine their potential customers problems tend to fail. [48]

An example given by Roberts of competitive strategies going wrong is the war between Japan

and the US. In the 1930s both had a perceived problem of national security. Japan needed the oil

in the Pacific Ocean to ensure its national security, however the US considered Japan entering the

Pacific Ocean as a threat to its national security and this arguably caused the war. [48]

Collaborative strategies involve bringing together all the stakeholders and attempts to find a

common ground solution. The benefit of this method is that resources are not wasted in competi-

tion. The example given by Roberts is the organisation of relief in Afghanistan. This involves the

distribution of food, water to the populous and the reconstruction of the essential utilities (power,

water, gas, etc.). It was difficult and painful for the stakeholders to meet up together and discuss,

however the end results were a large improvement over the previous state. The drawback is that

the more stakeholders that are involved the slower the process. [48]

According to Rittel and Webber [39], a popular idealist solution to Wicked problems that has

been circling in the field of planning is to create a feedback decision-making system where the

unexpected consequences of introducing solutions to Wicked problems could then be addressed

iteratively. This is perhaps an early prelude to the iteratively development in software engineering.

Iterative development and responding to new created requirements near the end of a project has

been picked up by Agile Methods [49].

There is work on the collaborative approach as a solution to Wicked problems, such as TRAiDE

[50] (discussed later in section 4.1) and Strategic Kinetic [51]. The common theme in all these

solutions is to create a shared problem representation between the stakeholders through some kind

33

of problem visualisation technique. Techniques typically used in these solutions include problem

representation, dialogue mapping and the ability to perform what-if scenarios. Most of work done

later on in this thesis is intended to support these techniques.

The purpose of the collaborative techniques is to form a better problem formulation of a

‘Wicked problem’ by including more stakeholders into the decision-making. Using collaborative

techniques can’t get around the characteristics of ‘Wicked problems’. It is hoped that by including

more stakeholders to get a better problem representation that better solutions can be created.

3.4 Evolutionary Warfare

Warfare is carried out in the natural world for the purpose of survival between predator and prey

species and has been well studied [52]. Since a major motivating factor in the research is TLCM,

which was designed for performing acquisition in military scenarios, it makes sense to discuss

evolutionary warfare and see if there are any lessons that can be learnt.

Symmetric warfare is where two armies procure the same types of things to be sent to the front

line; for example both armies decide to procure the same type of tanks. In this case it is quite clear

that the army who has the most resources (so they can build the most tanks) is the most likely

to win. Since for symmetric warfare to happen it requires both parties to agree to it, the party

with fewer resources are likely to turn to asymmetric warfare to gain a better chance of winning.

Symmetric warfare in the natural world tends to be avoided by the two species going after different

resources in the environment [52]. The UK’s recent wars have been asymmetric warfare [53].

An interesting occurrence in the natural world found by Valen [54] cited in [55] is that, contrary

to popular belief that a species will gain more and more beneficial adaptations over time making

species less likely to go extinct over time, is that all species go extinct at the same rate. The effect

was called the Red Queen Effect after the Red Queen in the sequel to Alice in Wonderland [56]

who keeps running as fast as she can but she cannot progress, since the landscape itself keeps up

with her. Valen [54] cited in [55] proposed hypothesis is that the effective environment, which

includes the other species that can make counter adaptations, will always be the same as the other

species in the environment will eventually create counter adaptations to any beneficial adaptations

a species makes. Dawkins and Kerbs [52] proposed that on the introduction of a new adaptation

by a species that it will enjoy a small amount of time before it’s opponent species determine a

counter for this adaptation.

The Future Air and Space Operational Concept report [57] shows a example of this in that

it says Air power has given them a large advantage over the enemy and in response now the

enemy is making the Air power less effective by hiding in complex terrains, the use of tunnels

and by hiding within urban environments. The report goes on to say that the enemies are also

trying to use information warfare to misrepresent air power as a “cruel overmatch” and “blunt

instrument of power”. The nuclear weapons used by the United States in 1945 were clearly an

almost uncounterable adaptation and by using it they were able to gain victory. However now due

to new social and political pressures using nuclear weapons in normal war zones is unlikely to be

viable. [57]

According to Cartlidge and Bullock [58] there are three endings for a co-evolutionary race.

34

• An uncounterable adaptation is found by one side leading to the extinction of the other side.

• A temporary uncounterable adaptation can be found that makes any strategy the other side

uses to be equally effective [59–61].

• The co-evolution may enter a cycle where each strategy is beaten by another strategy as

occurs with the side-blotched lizard mating strategies [62].

In side-blotched lizard mating strategies, there are three versions of males with different

coloured throats [62], which are:

• The aggressive males with orange throats that defend large territories.

• The sneakier males with yellow throats, which is the same throat colour as the female side-

blotched lizard, which do not bother with defending territories.

• The non-aggressive males with blue throats that defend small territories.

According to Sinervo & Lively [62], an over abundance of aggressive males leads to an over

abundant of sneakier males who are able to mate undetected by the aggressive males as the aggres-

sive males guard large territories. An over abundant of sneakier males leads to an over abundant

of non-aggressive males as they guard much smaller territories and therefore are able to catch the

sneaker males. An over abundant of non-aggressive males leads to an over abundant of aggressive

males who can contest their territories. This results in the side-blotched male lizard population

cycling between the three types of male lizards. [62]

Dawkins and Krebs [52] purpose that species have a limited budget of resources that adapta-

tions can be bought with resulting in species choosing between generalising for a large number of

species badly and specialising against a few species well. This raises the possibility that an army

could be tailored specifically to defeat another army, which in the general case may be the stronger

army.

What should be taken away from the section is that asymmetric warfare is far more common

than symmetric warfare in general. Living species also have a limited budget for acquiring their

adaptations for warfare and they make the choice between adapting for a large number of oppo-

nents badly or specialising against a few opponents well. The UK MoD is likely doing the former

whilst some of the other countries are likely to be doing the latter. The value of new capabilities,

even apparently uncounterable capabilities such as nuclear weapons is likely to degrade over time

as the surrounding environment adapts, if not by military means via political or economic means.

3.5 Summary

In this chapter, we discussed the literature relating to Through Life Capability Management and

research fields that provide general guidance to the research such as wicked problems and evo-

lutionary warfare. In the next chapter, we will move onto discussing existing solutions that are

already used in practice to address the large-scale acquisition problem.

35

Chapter 4

Literature Review - Current Practice

This chapter describes the current practice in relation to defence acquisition. The chapter begins by

describing the TLCM Robust Acquisition inclusive Decision Environment (TRAiDE), which is a

workshop based process using tool support that aims to facilitate trade-offs in defence acquisition.

The chapter then covers the more traditional high-level acquisitions techniques used by militaries,

which are Enterprise Architecture Frameworks and military simulations, before covering some

basic work on modelling capabilities and the work produced by the Network Enabled Capability

Through Innovative Systems Engineering (NECTISE) project.

4.1 TRAiDE

TLCM Robust Acquisition inclusive Decision Environment (TRAiDE) [50] is a process for per-

forming trade-offs in defence acquisition. Daw [63] defines defence acquisition as a Wicked prob-

lem (discussed in section 3.3). Under Roberts’ [48] approaches to solutions to Wicked problems

(discussed in section 3.3.1), TRAiDE falls under the collaborative type solution category. [50]

The TRAiDE process starts by bring the stakeholders for the trade-off together in a workshop.

Information is collected from the stakeholders and is stored in an information manager acting as

a central place for information. The information manager supports the manipulation of its infor-

mation by external tools, including tools for risk management, formal requirement management,

simulation and performance analysis. The information manager is used to produce visualisations

for the stored information. Visualisations are tailored to the different aspects of the problem for

different stakeholders and are created with the ability for them to be manipulated during presen-

tations. They all draw from a common information source so the knock-on effects of making

changes in one visualisation can be seen in others. [50]

TRAiDE uses the five main perspectives used in the TLCM process: capability, industrial,

commercial, financial and research. Visualisations are produced of various different acquisition

scenarios for demonstration to the stakeholders for discussion and comments. Feedback is taken

on information gaps and information inconsistency. A test of TRAiDE was performed on the

Future UK Mine Counter Measure Capability (FMCMC) and was run over a six months period.

This resulted in the restructuring of the FMCMC programme. [50]

TRAiDE [50] makes use of a modified Gantt chart called the Integrated Management Plan.

The Gantt chart contains the acquisition programmes with their start time, in-service time and

retirement time. The acquisitions programmes that are in-service at any one time are aggregated

together to produce a capability-over-time graph alongside the Gantt chart. This is to allow the

changes in capability to be managed over time by identifying gaps in capability between the retire-

ment and replacement of components. Once these gaps have being identified, the stakeholders can

move the acquisition programmes forward or backwards in time to help cover the gaps, to extend

the in-service time of the existing components, or can choose to ignore the gap. [50]

The approach employs the collaborative approach to addressing wicked problems in running as

a workshop to bring the stakeholders together. According to Daw, simply employing a workshop-

based process without using the common conceptual model had major issues, due to the various

stakeholders in military acquisition speaking with different terminology. A major part of TRAiDE

is that the viewpoints allow the various stakeholders to see how their view of the acquisition

problem, and their attempts to solve it, have knock-on effects in other people’s views. 1

The benefits of the approach are that it takes a collaborative approach to large-scale acquisition

and attempts to help the various acquisition decision makers understand each other’s perspectives.

The drawbacks are that it takes a long time to perform in practice due to being a workshop-

based process and needing to collect all the various stakeholders together. A major problem found

was that for the Integrated Management Plan there was no known objective manner in which the

various acquisition programs could be aggregated to determine military capability that worked.

One of the major motivations for this thesis is trying to solve this problem; this issue is research

gap 1.

4.2 Enterprise Architecture Frameworks

Enterprise Architecture Frameworks are widely used in the military for acquisition. The UK Min-

istry of Defence has adapted the US Department of Defense’s Architecture Framework (DODAF)

to create the UK MoD’s Architecture Framework (MODAF) [64]. MODAF covers more of the

Defence Lines of Development than DODAF, which focus mostly on the equipment line [65].

Enterprise Architecture Frameworks were popularised by Zachman [66] who took building archi-

tecture blueprints and adapted them for use on organisations instead of buildings [66]. The first

framework was the Zachman Framework [67].

Enterprise architecture frameworks contain a large number of predefined viewpoints. To use

an enterprise architecture framework, a relevant subset of the viewpoints for the problem is cho-

sen and those are drawn up for the organisation in question. In normal building architecture, the

viewpoints would be concepts such as the outer wall drawings, the electrical wiring, the plumbing,

etc. Enterprise architectures act as a repository in which information can be stored. Example view-

points for enterprise architecture are goal lists, process lists, process models and entity relationship

models [67], through the viewpoints vary depending on the enterprise architecture framework be-

ing used.

A study into Enterprise Resource Planning systems [68], which are systems that group together

several other systems, found that a hidden benefit of Enterprise Resource Planning systems was

decision support. This is likely to be due to Enterprise Resource Planning systems collecting infor-

1Private discussion with Andrew Daw

37

mation into a central repository like in Enterprise Architecture Frameworks and in TRAiDE. Some

Enterprise Architecture Frameworks have an underlying meta-model which allows the querying

of information contained within the views [69].

At the Integrated Enterprise Architecture Conference 2010, a leading conference on the usage

of enterprise architecture it was announced by a conference organiser as a safety warning to practi-

tioners that there was little benefit in using an Enterprise Architecture Framework on an enterprise

in the hope that some useful information will come out of it; to which there was no objection

to the announcement. This is because the information captured by the Enterprise Architecture

Framework will not be at the same level of abstraction or the right type of information as if the

Enterprise Architecture Framework was created to solve a specific problem. This relates back to

the concept of modelling (discussed in section 2.6), where a model is acquired or produced with a

purpose in mind.

Enterprise architecture is used for managing changes in large organisations. For example the

Singapore MoD is using enterprise architecture to merge together 90% of the processes contained

within their land, navy and air force [70] and the Swedish Armed Forces are using enterprise

architecture to help manage its transition from a conscript army to a professional army [71].

MODAF the UK MoD’s enterprise architecture framework has a large number of viewpoints

split into six categories, which are strategic, operational, system, technical, acquisition and service-

oriented [72]. MODAF has an underlying metamodel (metamodels are covered in section 5.4) that

allows querying of the information stored inside of the viewpoints [69]. MODAF begin as the US

DoD’s DODAF and was adapted to by the UK to include the Defence Lines of Developments [65].

DODAF itself has a heavy equipment focus [65].

Enterprise architecture frameworks such as MODAF or DODAF are not tools for making high-

level trade-off decisions; however they are commonly used tools for both recording the acquisition

decisions made and performing the management of the individual acquisition programmes, once

the decisions have been made.

4.3 Military Simulation

The US Department of Defence classifies military simulation into three types [73]. Live simula-

tion, which refers to war-games using real people and real systems; Virtual, which refers to using

real people but within a simulated world; and Constructive, which refers to using simulated people

operating in a simulated world. [73]

OneSAF is a product line containing multiple products designed to be used together to create

military simulations and is used by the American Department of Defense [74]. It was developed

in response to a recognition of a duplication of effort in developing modelling and simulation

tools [75] cited in [74]. Its product line has an architecture that has been designed to facilitate

reuse of its components for different military simulations [74]. It uses an agent based model and

has the concept of a physical model, which represent the effectors and preceptors of agents and a

behavioural model, which deals with how the agents act according to the applicable doctrine [76].

A language is defined in terms of domain concepts for allowing non-developers to describe the

behaviour of agents and works by composing primitive behaviours [76].

38

The High Level Architecture [77, 78] is a Department of Defense standard for its simulations

to promote interoperability between them; it has been accepted as an IEEE standard. The standard

mandates the use of a run-time infrastructure that the developed simulations can connect to. This

allows them to share information with other simulations. Multiple simulations running together

are called a federation. It uses a publish-subscribe system where objects in the simulations are

published then other simulations can then listen to and changes the other objects present. Even

with the high level architecture, when the simulations have been developed independently there

are problems in using them together [79, 80].

Military simulation mostly sees usage in the development of individual systems [81]. Simula-

tions will be discussed in more detail in the next chapter (section 5.2).

4.4 Weighted Sum Based Approaches

Work by Wyer & Long [25] looks at modelling capability through-life. It considers the Fundamen-

tal Inputs to Capability (Australian version of the DLoD) in the limited sense of being restrictions

on the number of deployable platforms. It models platforms using a different set of Measures of

Performance (MoP) for every military capability being considered and for every role the platform

can take. The papers points out that the number of MoP required can become large for reasonable

sized problems. To convert the MoP into Measures of Effectiveness (MoE), weightings are given

by the stakeholders for each of the threat environments (high, medium, low). This weighted sum

approach is normally implemented by using a matrix for the MoP measurements, and multiplying

them by another matrix of weights to generate a matrix for the MoE measurements. The acquisi-

tion of the platforms and the costs against time is modelled and the result is graphed. The work is

limited in that it performs many simplifications in not considering anything but platforms directly

contributing to military capability, and by only considering the possible threat environments as

high, medium or low.

Weighted sum solutions such as this are widely believed in the defence community to be

incorrect. For a basic explanation of why consider a ‘Long Range Strike’ capability implemented

using a F16 Bomber, an aircraft carrier, a pilot training program and a pilot. In the weighted

sum method, these four concepts are assigned weights that are summed together to produce the

capability. The loss of the pilot training program may result in reduced capability rather than no

capability if the pilot knows how to fly a similar aircraft; this can be express in weighted sum.

The loss of any of the F16 Bomber, the aircraft carrier or the pilot should result in zero capability,

however this simply cannot be expressed using weighted sum as the other terms in the weighted

sum will still have values. The relationship between the components and the produced capability

is not a relationship that is amenable to the weighted sum based approach.

Another more complex example is a ‘Video conferencing’ capability. The capability is pro-

duced by two computers, with video conferencing software, two webcams and a network infras-

tructure. Whilst the reduction of video quality due to using cheaper webcams can be expressed

using weighted sum, the loss of either computer, or the loss of the network infrastructure resulting

in no capability cannot be expressed via weighted sum. Nor the fact that if the webcams pro-

duce higher quality video than the network infrastructure is able to send, the extra video quality

39

is simply lost. In short, the relationship between the Defence Lines of Development (DLoD) and

capabilities is usually domain specific and non-trivial.

4.5 NECTISE Architecture Framework

In the now completed NECTISE project, Webster et al [82] starts to develop what is essentially

an architecture framework coupled with a process for evaluating how system architectures can

meet Network Enabled Capabilities. Network Enabled Capabilities are capabilities that have be-

ing created with a network of systems (another term for system of systems) working together. The

framework has a meta-model for representing its structure. The framework defines a set of docu-

ments to be provided by the user, which includes a definition of the desired capability, a definition

of a scenario to evaluate the capability against and a configuration for the services in meeting the

capability. An outline of the intended process is given, however it is incomplete and needs further

research.

Venters et al [83] extend this work by giving examples of converting military scenarios into

MoEs. Unfortunately the work is too preliminary to be useful. Rather than providing an architec-

ture framework and process it provides a general outline of what such a thing could look like with

the intention that the author would follow up the work in later publications, which has not been

done so far.

4.6 Summary

In this chapter, several existing techniques used in large-scale acquisition have been discussed.

The collaborate approach TRAiDE to solving the problem of large-scale acquisition trade-offs

have been discussed along with its remaining issues that need to be solved. Enterprise Archi-

tecture Frameworks that are commonly used to document solutions to large-scale acquisition has

been discussed. A naive solution to converting DLoD into capabilities using weighted sum has

been discussed along with the inaccuracy of this method. Military simulation and some of the

preliminary results of the NECTISE project have also been covered. In the next chapter, research

fields that may be applicable in addressing the research gaps will be discussed.

40

Chapter 5

Literature Review - Applicable
Research Fields

5.1 Introduction

This chapter explores the relevant research fields that may be drawn upon to help address the

identified research gaps (section 1.3). The research fields that will be discussed are simulation,

agent based modelling, goal modelling, metaheuristic search, model-driven engineering, sensitiv-

ity analysis, decision support and feature models.

5.2 Simulation

This section explores the general techniques and ideas behind simulation whereas section 4.3

discussed the military specific adaptations to simulation. Simulation in general is where a model of

a system of interest is used in place of the actual system to perform experimentation and analysis.

The model needs to be fit for the purposes of the simulation for the results to be valid (discussed

in section 2.6). Both the final state of the simulation and how the model changes over time can be

studied. [84]

The core idea in simulation is that it is cheaper, easier and more feasible to make changes

to a model of a target system of interest than making the changes to the target system. This is

normally the case with most large systems. Making the changes directly to the actual system will

produce better and more reliable results than experimenting on a model of the system but it will

be more expensive. When changes to the model of the system are made the effects of the changes

are recorded and these are used to inform decisions for changing the actual system. [85]

Simulation in the context of this thesis is promising because in large-scale system acquisition

the effects of making acquisitions or changes to the large-scale system tend to be highly expensive

and irreversible. This is due to the nature of Wicked problems [39] (section 3.3), of which large-

scale system acquisition is one example, each problem tends to be unique and the changes made

by any potential solution irreversible. This means that it is not possible to undo erroneous changes

or alternatively attempt to learn from our mistakes to attempt to improve future decisions made

on the large-scale system. This could mean that simulation could be used to test some potential

solution to some problems, through simulation probably cannot be applied to some of the more

social problems. Another potential use of simulation for our work is in the measuring of the quality

of a capability; a simulation could be used to evaluate how well a system of interest will perform

in a scenario before the system of interest has been acquired.

5.2.1 Discrete event approach

Most current research on simulations uses the discrete event approach. In the discrete event ap-

proach, there is a system state composed of a set of entities each with their own attributes. Each

entity has multiple actions. The actions can lead to events, which can change the state of the

system. The discrete event approach supports the use of resources that represent things in the sim-

ulation, which have a constrained capacity; limiting how much of that resource can be used. The

inputs to discrete event simulations tend to be partially stochastic meaning the results from the

simulations are also partially stochastic. Typically, statistical techniques are applied to the output

of simulations to make sense of the resultant partially stochastic results. [84, 85]

5.2.2 Agent Based Modelling and Simulation

Agent based modelling and simulation [86,87] is a way to perform simulation of a complex system

by modelling agents or small autonomous parts of the system and how they interact with other

agents contained within the system. This is different from the discrete event approach described

above in that each agent is limited to acting based upon its own internal state and information it

receives from the environment. No agent can directly interfere with another agent’s state. An agent

can represent a person or a small part of the system that acts only according to its own knowledge

and rule set. In agent based modelling and simulation a large number of these agents work together

to produce complex emergent behaviours. This is relevant because almost all large-scale systems

are composed of large numbers of interacting components. Agent based modelling has also seen

widespread use in the social sciences under the name Agent Based Social simulation [88].

Hoverd and Stepney [89] argues that agents in real world systems never communicate directly

with each other but instead communicate via mediating fields contained within the environment.

A given example of mediating fields by Hoverd and Stepney is where one agent sees the reflected

photons from another agent and is therefore aware of its presence. They go on to argue that the

agents have internal states, which the agent acts on, and that the information they receive from the

environment into their internal state will be incomplete. To implement this approach they suggest

using a client-server architecture where the server contains the external states of each agent within

the environment and each of the agents is a client that requests the external states of the other

agents through the server.

5.2.3 General Simulation Concerns

As simulation size grows, the computational power needed to perform a run of a simulation will

increase. An obvious solution for large simulations is to run them in parallel on multiple com-

puters. Whilst parallelising simulations is non-trivial, a significant amount of research has been

carried out in pursue of this aim [90].

42

Whether a simulation is valid or not can only be asked with respect to the purpose of the

simulation [35]. This is because simulations are based on models of the system, which only

describe a simpler version of the system (see discussion in section 2.6). For each question the

simulation is to be asked about the system, the validity of the model used by the simulation must

be re-established [35]. Simulations are not normally meant to give the perfect behaviour of the

actual system but instead an approximation within an acceptable range [91]. The distance the

results can vary from the real system while the simulation remains valid depends on the purpose

of the simulation [91].

Originally our research was heavily considering the usage of simulation. However, it was

found that goal modelling is a better and simpler abstraction for dealing with capabilities and the

issues of simulation validation can be avoided because goal models provide a structured argument

for why acquiring things allows an organisations objectives to be fulfilled that can be checked by

human experts for validity.

5.3 Goal Modelling

Goal modelling is a set of techniques used for early requirements engineering. A large number

of requirement techniques begin with some physical system in mind that will fulfil the needs of

the stakeholders [39]. Goal modelling instead begins with the ‘how’ the stakeholders wish to

solve their problems and formalised it as goals and these are eventually decomposed into systems,

people or processes that are the ‘what’.

The Zachman Architecture Framework [67] considers all acquisition problems to have a ‘why’,

‘how’ and ‘what’ part: ‘why’ is the acquisition taking place, ‘how’ will the acquisition solve the

problem and ‘what’ will be acquired. In TLCM, military capability represents the ‘how’s of how

the operations will be performed leaving the ‘what’ of what the physical systems will be undefined.

The ‘whys’ for capabilities are contained in the defence planning assumptions that include the

military scenarios the military expects to face in the future.

Goals and capabilities are similar concepts. Satisfying a goal and satisfying a capability both

represent having the ability to satisfy some objective. A goal and a capability is effectively a

‘how’ statement, of how something will be done to solve the acquisition problem. The DLoD

from TLCM and system, people and processes from goal modelling are both categorisations of

things that can be acquired in the satisfaction of capabilities and goals. These are also similar

concepts. They both correspond to some ‘what’ statement of what will be acquired to solve the

acquisition problem.

The first identified research gap in this thesis is bridging the gap between the military ca-

pabilities and the acquirable things, which are categorised by the Defence Lines of Development

(DLoD). This is similar to bridging the gap between goals and people, processes and people, which

goal modelling already performs. Goal modelling therefore would be potentially a good place to

start and build upon for solving the first research gap.

Some techniques focus on modelling the goals from the individual actor perspective within the

organisation [22, 92] allowing the internal goals of the actors to be considered while others focus

on modelling the goals of the entire system then discharging them to actors for implementation

43

[21, 93]. The technique developed later in the thesis will use the latter approach since it is the

approach taken in Through Life Capability Management (TLCM). Work has also been done on

using goal modelling for arguing the safety of a system [94,95]. Some of the main goal modelling

techniques are i* [22], KAOS [21, 93], GSN [94, 95] and GBRAM [92].

Goal modelling has two major competing styles, KAOS [21] and i* [22]. The style of goal

modelling being used in TLCM is much closer to the KAOS style, which has goals belonging to

the system as a whole, rather than the i* style of goal modelling, which has goals belonging to

individual agents. The KAOS goal tree starts with the high level objectives and then decomposes

them as a AND/OR graph and eventually all the leaf goals will be satisfied by agents which are

either people, systems or processes [21].

Goal modelling is used extensively in the CATMOS technique to justify why acquiring certain

sets of components results in satisfaction of military capabilities. The use of goal modelling has

the effect that all the produced acquisition plans by the technique can be checked manually by

human experts for validity.

5.4 Model Driven Engineering

Model Driven Engineering (MDE) is a principled approach to software engineering based on the

concept of using models instead of code for the implementation of software systems. The ad-

vantage of doing this is that the abstraction level of specifying the software can be raised to the

domain concepts of the software system stakeholders. [36–38]

The aim is to increase productivity and to allow more complex software systems to be written.

A precursor to MDE comes from research into Computer Aided Software Engineering tools, which

specify programs using graphical diagrams. One of the principles of MDE is that a model is

written using the concepts of the problem domain rather than concepts relating to the software

implementation. MDE employs the use of model transformations to change the model into a form

that allows execution. [38]

A similar approach is taken in the Object Management Group’s Model Driven Architecture

[96] that defines a Platform Independent Model (PIM), which is a model of a system without

technical detail and a Platform Specific Model (PSM), which is a model closely tied to a specific

implementation technology.

A widely used approach to MDE is Domain Specific Modelling Languages (DSMLs) [38].

These are based on Domain Specific Languages (DSLs). A DSL is a programming language that

focuses on a narrow application domain [97]. This is opposed to a general-purpose language

such as C++, Java, Python, etc. that aims to be applicable to any application domain. The use

of DSLs allows people to create applications for the target application domain much faster than

general-purpose languages [97, 98]. The drawback is that the DSL must first be developed for the

application domain before it can be used [97, 98]. DSLs have an abstract syntax tree that defines

the concepts and relationships between the concepts that can exist in the language and a concrete

syntax tree that defines the grammar syntax that programs written in the language must follow.

In Domain Specific Modelling Languages (DSMLs), instead of an abstract syntax tree a meta-

model is used [38]. A metamodel is a model that describes the concepts and the relationships

44

between the concepts that can be used in other models that are said to conform to the meta-

model [99]. Once defined metamodels have a variety of uses. One such use is allowing a set of

constraints to be written in the terms of the metamodel and then checked on models that conform

to the metamodel [38]. Another use of metamodels is for enabling model transformation. Model

transformation rules can be written in terms of a source metamodel and of a target metamodel

and then models that conform to the source metamodel can be converted into new models that

conform to the target metamodel [99]. This can be extended to use multiple source models with

multiple source metamodels and with multiple target metamodels to create multiple target models.

Example transformation languages using the metamodel concept are the ATLAS Transformation

Language [100], Epsilon Transformation Language [101] and any transformation languages that

comply with the QVT standard [102]. Model transformation is the main approach to addressing

the gap between the Platform Independent Models and Platform Specific Models [103]. The use

of DSMLs and model transformation also allows additional models to also be produced from the

DSMLs such as safety models and formal proofs [97, 104].

A standard usage of MDE for software development is to create a DSL for capturing the prob-

lem in the conceptual terms used by the stakeholders and then creating another DSL that describes

the problem in the conceptual terms of the implementation details. A model transformation is

then used to convert problems specified in the stakeholders DSL to the implementation DSL and a

model-to-text transformation is then used to convert the model written in terms of the implemen-

tation DSL into source code that can then be compiled and executed as a program. [38]

One MDE tool is Epsilon [101], which is an extensible model management platform built on

top of Eclipse [105] and the Eclipse Modelling Framework [106]. The concept of Epsilon is to

provide a common framework with a base language that other model management languages can

be written on top of. The base language is Epsilon Object Language (EOL) and this serves as a

general-purpose model management language. On top of this, multiple task specific languages

have being written including the Epsilon Transformation Language (ETL) [107], Flock [108] and

EuGENia [109].

MDE is relevant because it provides techniques and tools that allow the easy manipulation

of models such as the models used in goal modelling and simulations. This thesis uses MDE to

support the automatic restructuring of goal models.

5.5 Metaheuristic search

Metaheuristic search is a technique that can be applied to combinational optimisation problems

[110]. A combinational optimisation problem is where there is some goal to be achieved by

configuring objects and the challenge is to find the ‘best’ configuration [111]. A generalisation

of the technique is multi-objective combinational problems that deal with more than one goal at

a time [112]. Search is applicable to this research project, as we will be looking for the best

configuration of procurement projects with respect to various goals. It may be possible to improve

on work done in TRAiDE (section 4.1) by using this technique on its scheduling of projects.

Metaheuristic search allows the exploration of search spaces, which would normally be im-

practical to exhaustively consider due to the size of the search space or the time taken for each

45

Figure 5.1: Example function f(x) with local and global optimum

evaluation of a potential solution [111]. They permit a trade-off between solution quality and the

computational time needed to find it [113].

A general form of the metaheuristic search problem is to maximise a fitness function F(x)

where x is a set of parameters to F(x) that can be changed to alter the value of F(x) [113]. A

function F(x) normally contains local optima and a global optimum. The global optimum is the

maximum value that a function can reach given the optimal input parameters. An example of this

is shown in figure 5.5. The concept of a neighbourhood is some function that takes in x values and

defines a new set of x values, which are considered to be nearby the x values. This leads to the

concept of a local optimum. A local optimum is an x value for which F(x) is greater than the F(x)

of all neighbouring x values, but x is not the global optimum. Metaheuristic search techniques

need a method to leave these local optimal and reach the global optima. Briefly we will cover

three of the metaheuristic techniques, which will be simulated annealing, tabu search and genetic

algorithms. Simulated annealing and tabu search both explore one place in the search space at a

time, as opposed to genetic algorithms that use a population based approach to explore multiple

places in the search space at the same time [110, 113–115].

Simulated annealing [110] is based on the physical process of annealing, which aims to make

certain materials (steel, copper, brass, glass) reach their ground state by heating them up and then

slowly cooling them down. The ground states of a material are rare compared to all the other

possible states they can hold and if the temperature is suddenly dropped the material finds a non-

ground state.

A simulation proposed by Metropolis et al [116] for simulating interacting atoms within a ma-

terial works by randomly creating displacements and accepting them if they led to less energy in

the material and accepting them but only at a certain probability if they result in more energy in the

material. Simulated annealing was invented by Kirkpatrick et al [110] who extended the algorithm

of Metropolis et al by starting with a high temperature, which relates to a high probability of ac-

cepting higher energy configurations, and lowering it with time and having the accepting function

to be a desired search goal. This was shown to find good results over a range of combinatorial

problems. Kirkpatrick et al suggest that this is because the found state at high temperatures during

46

the search got good gross features and at low temperatures the found state got good local features.

Tabu search [115] begins with a random solution to the combinatorial problem and then makes

improvements to the solution by continuously taking the best locally optimal decision called a

move. Locally optimal decision means by only changing one part of the current overall solution,

which change leads to the greatest improvement. A tabu list is implemented that has a memory

of previous moves taken and prevents these moves from being taken again for a short period of

time. This leads to the search exploring more of the search space rather than just heading directly

to the nearest local optima. Tabu search can make an exception to the tabu list called aspiration if

a move would be a very large improvement.

Genetic algorithms [113, 117, 118] are metaheuristic techniques that explore a search space

using a population of individuals that are scattered over the search space. Genetic algorithms use

the concept of a chromosome. The chromosome is a representation of the solutions that is more

suitable for using search techniques on like crossover and mutation. The chromosomes are then

mapped to actual solutions, which can then be evaluated. The chromosomes are genotypes where

the actual solutions are phenotypes. The genotype corresponds to the DNA in life that describes

what a plant or animal will look like and the phenotype is the plant or animal itself. Genetic

algorithms begin with an initial population of random chromosomes and then map them to actual

solutions and evaluate all the solutions. The best solutions that are closest to the desired objective

are then selected using a selection algorithm and then bred together using breeding operators to

produce a new population replacing the old population. This process is repeated multiple times and

usually causes the population to converge towards solutions that either satisfy or approximately

satisfy the desired objective. Two normal breeding operations applied on members of a population

to create new population members in a genetic algorithm are crossover and mutation. Crossover

creates offspring chromosomes from two parent chromosomes by taking parts from each member.

Mutation causes random changes within the chromosomes.

5.5.1 Multi-objective Search

Metaheuristic search was first extended to dealing with multiple goals by Schaffer [112] with his

vector extension to genetic algorithms. There are three main ways to extend genetic algorithms to

support multiple objectives, which are weighted sum, changing the objective function each round

and using Pareto ranking [118]. Weighted sum is using the sum of the goals of interest as the goal.

Changing the objective function is alternating between the various objective functions present. The

most interesting for our work is Pareto ranking as it deals with making trade-offs in the allocation

of resources. Pareto optimality is a well-known concept from the field of economics. A solution

is considered to be Pareto optimal when to make any further gain to one objective it requires that

another objective take a loss. The Pareto front is all the possible Pareto optimal solutions to a

problem. This is useful because solutions that are not Pareto optimal do not need to be considered

when making trade-offs because there will be another solution that is Pareto optimal that is strictly

better than it. Goldberg [117] states that to get a good representation of the Pareto front requires

both the use of ranking based on Pareto domination in the metaheuristic along with an anti-niching

method to prevent all the solutions centring around a single point on the Pareto front.

A widely used multi-objective search algorithm is called NSGA-II [119]. NSGA-II attempts

47

to evolve a population of members optimal in different ways by introducing the concept of a Pareto

front to its fitness function and rewarding population members for how Pareto optimal they are.

A solution is Pareto optimal when there are no other solutions that are better than the solution for

all objectives. So for two objectives with two solutions (5,7) and (8,4) both are Pareto optimal

since they are both better on an objective. If another solution (10,10) was introduced than it would

be Pareto optimal and the two previous solutions would not be Pareto optimal since (10,10) is

better than them both on both of the objectives. The NSGA-II algorithm penalises its population

members proportionally to the number of other people members that are better than them for all

objectives. NSGA-II also includes an anti-crowding algorithm, which penalises solutions for being

close together. A main contribution of the NSGA-II algorithm was being able to rank the solutions

in O (N2) rather than O (N3) time.

Finding the Pareto front of solutions for multi-objectives is useful because all the solutions on

the Pareto front represent the trade-offs that can be made and no solution outside the Pareto front

needs to be considered since it is strictly worse than a solution inside of the Pareto front. With the

Pareto front, the decision maker can simply choose the trade-off they want to make from the front.

This is a useful technique for performing trade-offs as instead of giving one possible solution

to the stakeholders it shows a large number of possible trade-offs between the stakeholders. The

research field of multi-objective optimisation extends metaheuristic search techniques with the

concept of the Pareto front. It is used in this thesis for addressing the second research gap, which

is dealing with the multi-objective nature of the trade-offs involved (section 1.3.2).

5.6 Sensitivity Analysis

Sensitivity analysis in the context of modelling is where the effects of the inputs of a model are

considered in respect to their effect on the output of a model [120]. A definition of sensitivity

analysis is “The study of how the uncertainty in the output of a model (numerical or otherwise)

can be apportioned to different sources of uncertainty in the model input” [121]. Sensitivity anal-

ysis can be broken down into local and global sensitivity analysis [121, 122]. In local sensitivity

analysis the effect of varying one input variable at a time is considered on the outputs of the model

whilst the other input variables remain constant [122]. In global sensitivity analysis the effects of

varying one input is considered on the outputs of the model whilst the other inputs variable are

also varied. [122].

Sensitivity analysis is a useful technique for checking the robustness of the outputs of a model

or simulation based on the uncertainties present in the inputs to the model or simulation. Sensitiv-

ity analysis has been applied to the results of the to be presented technique (presented in chapters

7, 8 & 9) to check their robustness. This work was carried out in conjunction with another author

and is published in [4].

5.7 Decision Support Systems

Decision support systems are computer systems designed to support people in the making of de-

cisions. The types of decisions made using decision support systems are recognised to have both

48

a structured part that is most easily handled by a computer and an ill-structured part that is mostly

easily handed by a human [123–125].

In this thesis, the technique attempts to address the structured part of the problem. The ill-

structured part of the problem, which is defining the desired capabilities and which trade-offs to

make in satisfying them is left to existing techniques such as TRAiDE (section 4.1), which uses a

workshop-based process to deal with the ill-structured part of the problem. The works leaves the

most ‘Wicked’ (see section 3.3) part of the problem to existing techniques such as collaborative-

based approaches and aims to address the more tamer structured part of the problem.

5.8 Product lines and Feature models

Techniques that aim to provide a configuration of a system such as product lines and features

models are not applicable. This is because the number of different ways the components can come

together to provide capabilities grows exponentially with the number of components. Whilst each

individual acquisition plan in CATMOS is represented using a directed acyclical graph, a directed

acyclical graph such as those used in feature models [126] cannot represent the entire search

space or any significant portion thereof. Ignoring any notational issues or usability issues in using

feature models for this type of problem, a feature model to represent the problem would require

exponential space.

5.9 Summary

In this chapter, we have discussed various techniques that look promising in their application to

the three research gaps identified in the introduction. In the next chapter, we will briefly recover

the part of the problem identified in chapter 1 that the CATMOS technique will address.

49

Chapter 6

Problem Description

6.1 Introduction

In this chapter, the formalisation of the problem that the CATMOS technique intends to solve will

be given. This is followed by discussion of how the CATMOS technique fits into existing research

on solving acquisition problems. Finally, the current state of the art in solving the relationship

between the Defence Lines of Development (DLoD) and capabilities is discussed and why it is

unsuitable for the task.

6.2 Capability Management

Problem description 6.2 (related references [7, 8, 12, 16, 18]) gives an overview of the problem in

Through Life Capability Management (TLCM) [7] that the CATMOS technique tries to address

excluding the through life part of the problem. The through life part of the problem is discussed

in the next section.

In TLCM [8], acquisitions are managed in terms of capabilities. These are abilities that are

granted to front line commanders by performing acquisitions. The things that are acquired to

create these capabilities are categorised by the DLoD (section 2.3).

It is known that the relationship between capabilities and the DLoD is many to many however

the exact relationship is unknown [12]. This is related to the ‘Apples and Wednesdays’ problem.

The ‘Apples and Wednesdays’ problem, described by Barton and Whittington [18], is a prob-

lem in defence acquisition that the different acquisition programmes in the DLoD are completely

different types of things. However, if they all contribute to the produced capabilities and all cost

money, it should be possible to say that acquiring a new equipment programme is better or worse

value for money then acquiring a new training programme. How to compare the benefits of the

acquisition of new equipment programmes to the acquisition of new training programmes or per-

forming comparisons between any of the DLoD is however unknown.

The acquisition programmes, categorised by the DLoD, can be part of the pre-existing Sys-

tem of Systems or they can be acquired for the System of Systems at cost. Even in large scale

acquisitions, there are financial limitations for how much resources can be spent in performing the

acquisitions. In the UK MoD’s case, the acquisition programmes can be acquired either in-house

or from industry [8].

50

The problem to be solved is that the acquisition makers want to maximise the fulfilment of

the various capabilities whilst simultaneously reducing cost [16]. To do this, they need to make a

trade-off between the satisfaction of the various capabilities and the costs involved. A sub problem

of this is finding a method that can be used to go between the acquisition programmes and the

produced capabilities. This is research gap 1 as described in detail in section 1.3.1. Providing the

decision makers with the necessary information for trading-off between the various capabilities

and the costs is research gap 2 described in detail in section 1.3.2.

51

Desired capabilities:

Defence Lines of Development:

Surveillance capability

Route clearance capabilityLong range strike capability

Hard target removal capability

Scouting capability

Training Programmes Equipment Programmes

Personal Programmes Information Programmes

Doctrine and Concepts Programmes Organisational Structure Programmes

Infrastructure Programmes Logistics Programmes

Block route capability

Anti IED capability

The programmes can be both sourced in-house and sourced from industrial vendors.

Many to many relationship.
Each programme can contribute to many different capabilities

and each capability can be contributed to by many different programmes.

Budgetary limitations:

The exact relationship between the desired capabilities
and the Defence Lines of Development is unknown.

Air support capability

*

*

Whilst the budgets in large scale acquisition can be vast they are not infinite.

Problem:
Maximise the satisfaction of the desired capabilities by

selecting which programmes in the Defence Lines of Development to acquire.
Whilst considering the budgetary limitations.

Whilst considering the in-place brownfield systems.
Since all the desired capabilities can't be maximised whilst keeping to

budgetary limitations, provide support to the acquisition decision makers to allow
them to choose the trade-offs that they wish to make

Research Gaps:

Research Gap 1: Find a method to bridge the gap between
the capabilities and the Defence Lines of Development

Research Gap 2: Allow the decision makers to effectively explore the trade-offs in
choosing which capabilities to satisfy.

Prob desc 6.1: The Capability Management Problem Overview

52

6.3 Through Life Capability Management

Problem description 6.3 (related references [7, 8, 12, 16, 18, 127]) shows the through life part of

the problem the CATMOS technique intends to address in Through Life Capability Management

(TLCM) [7]. The capabilities that are desired over time change as can be seen in MODAF StV-3

- Capability Phasing [127]. The desired capabilities change over time because the operations that

the UK MoD intends to perform change over time.

The acquisition programmes that provide the desired military capabilities take time to first

come into service and can eventually leave service. Whilst normally a replacement programme

will be acquired to replace an acquisition programme leaving service, the change over can lead to

capability gaps. It is desirable that these capability gaps are identified in advance, allowing either

the existing acquisition programmes service time to be extended, the new programmes acquisition

to be accelerated or the gap in capabilities to be accepted by the acquisition decision makers. [16]

The budget for acquiring new acquisition programmes and maintaining existing acquisition

programmes is acquired over time by the UK MoD. The scheduling of the new acquisition pro-

grammes needs to be scheduled around the available budget and the acquisition programmes need

to be ready for when the capabilities they support are needed and maintained until either the capa-

bilities are no longer wanted or alternatively the acquisition programmes are replaced either with

other similar acquisition programmes or more likely a different set of acquisition programmes

fulfilling the same capabilities in a different manner.

The main problem is to schedule the acquisition of the acquisition programmes around both

when the capabilities they help provide are needed and around the budgetary limitations. In places

where capability gaps can’t be avoided the capability gaps need to identified in advance so appro-

priate actions can be taken if necessary [16]. Solving this problem, whilst simultaneously solving

the problems from the previous section, make up research gap 3 as described in detail in section

1.3.3.

53

Desired capabilities:

Defence Lines of Development:

Budget:

Block route capability
Surveillance capability

Hard target removal capability
Anti IED capability

Long Range Strike Capability
Air support capability

Scouting Capability

Time

Equipment programme (Retiring)
Training programme (New)

Infrastructure programme (New)
Organisational Structure (New)

Personal programme (Maintained)
Doctrine and concepts programme (New)

Equipment programme (Maintained)

Time

Whilst some capabilities are wanted for the foreseeable future, other capabilities will
eventually no longer be wanted as the way operations are conducted changes over time.

New capabilities will also be introduced over time to allow new operations to be performed.

The individual programmes within the Defence Lines of Development can both enter and
leave service. This can lead to capability gaps where programmes supporting capabilities

leave service and the replacement programmes have not yet being acquired.

Incoming government funds
Outgoing new acquisition programmes
Outgoing maintenance costs and wages

Problem: Maintain the satisfaction of the desired capabilities through life
as programmes retire and new programmes come into service.

Avoid gaps in capabilities where possible otherwise identify when
the capability gaps will happen so they can be addressed properly.
Schedule the acquisition of new acquisition programs considering
the capabilities they contribute to and the budgetary limitations.

Research Gap 3: Schedule the acquisitions of the programmes through life considering
the capabilities they contribute to and the budgetary limitations

Prob desc 6.2: The Through Life Capability Management Problem Overview

54

6.4 Relationship with research on acquisition problems

Some general context is needed to clarify how the presented CATMOS technique will fit into the

existing research for solving acquisition problems. A conceptual overview of this section is shown

in problem description 6.4 with related references [39, 48, 67].

From Zachman’s Architecture framework, three of the major factors involved acquisition prob-

lems are the ‘why’, ‘how’ and ‘what’ [67]. The ‘why’ factors are the reasons behind why the

acquisition is taking place. This covers all the motivating reasons for why the acquisition has been

decided on. The ‘how’ factors frame the problem as some objectives that need to fulfilled. The

‘what’ factor decides on the physical things that will be acquired to meet the problem. An illus-

trative example is the ‘why’ factor being ‘Too many children passed the age of 10 are unable to

read in the county’, the ‘how’ factor being ‘Provide more books to the local community’ and the

‘what’ factor being a mobile library driving around the neighbourhood.

‘Why’ to ‘how’ is usually addressed by collaborative techniques such as TRAiDE [18]. TRAiDE,

which was developed in conjunction with MooD International, was one of the motivating tech-

niques for this thesis in that it was missing the underlying logic for performing ‘how’ to ‘what’. In

TRAiDE’s case this is in connecting ‘capabilities’ to ‘building blocks’. The technique presented

in this thesis deals with going between the ‘how’ to ‘what’ in acquisition.

An influential paper in the area of the large-scale acquisitions is by Rittel & Webber who

introduce the concept of a ‘wicked problem’ [39]. They describe problems faced in the field of

large-scale social planning. They note that there is a change when problems become sufficiently

large that they start to become defined by ‘verbs’ instead of ‘nouns’. This is similar to the changes

made by Through Life Capability Management [7] to Through Life Management (TLM) in that

the UK MoD has recognised that their problems need to be defined by ‘verbs’ and not ‘nouns’.

‘Wicked problems’ have numerous properties that make them intractable to solve by com-

putational techniques (discussed in section 3.3). A standard approach for dealing with ‘wicked

problems’ is to use a collaborative approach [48], which TRAiDE is one of. Dealing with the

‘why’ to ‘how’ of a problem using computational techniques would be incredibly difficult; how-

ever the ‘how’ to ‘what’ is mostly tractable because you can check whether or not a solution meets

the desired objectives in the ‘how’. Going from ‘why’ to ‘how’ mostly tames the problem.

Three solutions to ‘Wicked problems’ are the use of authoritative approaches, competitive

approaches and iterative development [48]. In authoritative approaches, a few of the stakeholders

decide on the problem and the solution by themselves, which tends to lead to failure [48]. In

iterative development the solution to the problem is given in parts and user feedback is taken

into account when producing the next part thus leading to the solution ‘homing in’ on the user

requirements. Competitive approaches are where a large number of companies attempt to solve the

same problem using authoritative approaches [48]. Many such companies go bankrupt; however

a few of the companies will succeed in solving the problem [48]. In the TLCM case, iteration

is provided by Urgent Operational Requirements (UORs) [43] however this means that there are

problems with solutions that have been found while in usage on an active battlefield, and thus there

is the goal to minimise the number of these that occur.

The CATMOS technique itself is designed to sit between the ‘how’ and the ‘what’ in Zach-

man’s Architecture framework [67]. It takes in capabilities, which are wanted objectives (how)

55

W
hy

H
ow W
ha

t

C
ol

la
bo

ra
tiv

e
M

et
ho

ds
 -

 S
ta

ke
ho

ld
er

s
co

m
e

to
ge

th
er

 h
av

e
m

ee
tin

gs
 a

nd
 w

or
ks

ho
ps

. E
.g

. T
R

Ai
D

E
Ite

ra
tiv

e
M

et
ho

ds
 -

 D
el

iv
er

s
so

lu
tio

n
in

 p
ar

ts
, t

ak
es

 u
se

r f
ee

db
ac

k
in

to
 a

cc
ou

nt
 b

ef
or

e
m

ak
in

g
ne

xt
 p

ar
t

Au
th

or
ita

ria
n

M
et

ho
ds

 -
O

ne
 p

er
so

n
de

ci
de

s
so

lu
tio

n
- G

en
er

al
ly

 fa
ils

Th
e

fo
ur

 m
ai

n
m

et
ho

ds
 fo

r g
oi

ng
 fr

om
 W

hy
 to

 H
ow

:

W
hy

 a
re

 w
e

so
lv

in
g

th
is

 p
ro

bl
em

?

H
ow

 a
re

 w
e

go
in

g
to

 s
ol

ve
 th

is
 p

ro
bl

em
?

Th
is

 s
te

p
ap

pe
ar

s
w

he
n

th
e

pr
ob

le
m

s
ge

t s
uf

fic
ie

nt
ly

 la
rg

e
sc

al
e

an
d

pe
op

le
 b

eg
in

 to
 re

co
gn

is
e

th
at

w

ha
t t

he
 s

ol
ut

io
n

is
 d

oe
sn

't
m

at
te

r a
nd

 h
ow

 th
e

so
lu

tio
n

w
as

 m
ad

e
do

es
n'

t m
at

te
r b

ut
 in

st
ea

d
th

e
on

ly

th
in

g
th

at
 m

at
te

rs
 is

 d
oe

s
th

e
so

lu
tio

n
m

ee
t t

he
 w

an
te

d
ob

je
ct

iv
es

.

Th
e

C
AT

M
O

S
te

ch
ni

qu
e

si
ts

 b
et

w
ee

n
ho

w
 a

nd
 w

ha
t.

It
ta

ke
s

in
 w

an
te

d
ca

pa
bi

lit
ie

s
(th

e
ho

w
)

an
d

pa
rts

 o
f p

os
si

bl
e

so
lu

tio
ns

 (t
he

 w
ha

t)
an

d
it

br
in

gs
 th

em
 to

ge
th

er
 to

 p
ro

du
ce

 a
cq

ui
si

tio
n

pl
an

s.

R
ef

er
en

ce
s:

 R
itt

el
 &

 W
eb

be
r 1

99
7,

 R
ob

er
ts

 2
00

0,
 Z

ac
hm

an
 1

98
7

In
 te

rm
s

of
 w

ic
ke

d
pr

ob
le

m
s

by
 R

itt
el

 &
 W

eb
be

r,
th

e
w

hy
 to

 h
ow

 is
 v

er
y

w
ic

ke
d

Th
er

e
ar

e
tra

de
-o

ffs
 th

at
 c

an
 b

e
m

ad
e

be
tw

ee
n

w
hy

 a
nd

 h
ow

. C
AT

M
O

S
do

es
n'

t d
ea

l w
ith

 th
es

e
tra

de
-o

ffs
.

W
ha

t a
re

 w
e

go
in

g
to

 a
cq

ui
re

 to
 s

ol
ve

 th
is

 p
ro

bl
em

?

C
AT

M
O

S
de

al
s

w
ith

 th
e

po
ss

ib
le

 tr
ad

e-
of

fs
 b

et
w

ee
n

th
e

ho
w

 a
nd

 w
ha

t.

In
 te

rm
s

of
 w

ic
ke

d
pr

ob
le

m
s

by
 R

itt
el

 &
 W

eb
be

r,
th

e
ho

w
 to

 w
ha

t i
s

le
ss

 w
ic

ke
d.

 T
o

de
al

 w
ith

 th
e

fa
ct

th

at
 th

e
pr

ob
le

m
 is

 s
til

l s
lig

ht
ly

 w
ic

ke
d,

 C
AT

M
O

S
pr

ov
id

es
 ju

st
ifi

ed
 g

oa
l m

od
el

s
th

at
 c

an
 b

e
ex

am
in

ed
 b

y
do

m
ai

n
ex

pe
rts

.

Po
si

tio
ni

ng
 C

AT
M

O
S

in
 th

e
fie

ld
 o

f a
cq

ui
si

tio
n

C
AT

M
O

S
re

lie
s

on
 th

er
e

be
in

g
an

 e
xi

st
in

g
m

et
ho

d
lik

e
TR

Ai
D

E
fo

r g
oi

ng
 fr

om
 w

hy
 to

 h
ow

.

C
om

pe
tit

iv
e

M
et

ho
ds

 -
Lo

ts
 o

f c
om

pa
ni

es
 tr

y
to

 s
ol

ve
 th

e
pr

ob
le

m
, m

os
t g

o
ba

nk
ru

pt
, a

 fe
w

 o
f t

he
m

 s
uc

ce
ed

Prob desc 6.3: The CATMOS technique in the field of acquisition

56

and it takes in potential solutions (what) and matches them to find potential acquisition plans. It

is envisaged that CATMOS will be used in conjunction with a collaborative method like TRAiDE

for handling the ‘why’ to ‘how’ part of the problem. CATMOS was originally motivated due to

problems found in the collaborative method of TRAiDE in that it was unknown how to go from ca-

pabilities (how) to acquisition programmes in the DLoD (what) when using the method. Through

the ‘how’ to the ‘what’ is a lot more tame than the ‘why’ to the ‘how’ part of the acquisition

problem it still has a slightly wicked nature. The CATMOS techniques answer to this is to provide

justified goal models for the acquisition plans that explain how CATMOS goes from the ‘how’

to the ‘what’, so the acquisition plans can be checked by human experts for issues. CATMOS is

intended to act as a decision support tool by providing the decision maker with different possible

acquisition plans rather than a decision making tool.

6.5 Current naive weighted sum based approaches

Before introducing the CATMOS technique, the problems with the existing techniques will be ex-

plored. For this, we are going to demonstrate with a simple tea making example that the CATMOS

technique will be applied to in the next chapter in section 7.3. The tea making example revolves

around making a good cup of tea by acquiring a source of water, a source of tea leaves and a

container to hold the tea in. In this example, the acquisition decision maker needs to decide what

to acquire to maximise the goodness of the tea that can be produced whilst considering trade-offs

against the cost.

This example will now be shown using a naive weighted sum based approach (similar to

work done by Wyer & Long [25]). It should be noted that these weighted sum based methods are

usually very simplistic, for example, considering each system contributing to the capability having

an equal value [18].

Before applying a weighted sum based approach, a couple of problems need to be addressed.

The first problem is that weighted sum based methods only consider one capability at a time

[18, 25] whereas the tea making case study shown in figure 7.2 has four wanted capabilities in a

tree structure.

There are two possible approaches to solving this with weighted sum. The first is to consider

the bottom three leaf capabilities, ‘Tea’, ‘Water’ and ‘Container’ separately and the second is to

consider them together using the top capability ‘Good Tea’ as an aggregate.

The next problem is that there is no support for concepts such as ‘criticalValues’ or ‘bench-

markValues’ in weighted sum based methods however weighted sum based methods get around

this by pre-normalising the values. That is translating the measurements value so the ‘critical-

Value’ is at 0 and the ‘benchmarkValue’ is at 1 as done in work by Wyer & Long [25].

The remaining problem is that weighted sum based approaches do not support dependencies

between systems [25], which is because they are mostly underdeveloped. The work by Wyer &

Long [25] does however support to some degree upgrading existing systems by writing a new

set of MoP for the upgraded system and this mechanism can be used to implement a basic form

of dependencies between systems. When a system upgrades a different system new Measure

of Performances (MoP) values must be written out by hand for the new combined system [25].

57

When considering all the combinations of possible systems and how they interact together, this

can result in an exponential amount of manual work making the technique impractical as is shown

in the following sub-sections.

6.5.1 Considering the capabilities separately

For the first option of considering each capability separately, a table of the MoP values along

with the costs for each applicable possible combination of systems for each capability needs to

be created by hand. The individual capabilities satisfaction can then be added together using the

formula: GoodTea = 0.6 ∗ TeaTemperature + 0.2 ∗ TeaFlavour + 0.2 ∗ InsulationQuality

The weights are the same as used previously in section 7.6.

Combination of systems Measurement of Performance Cost

Kettle 0.0 10.0

Kettle, Hot Water Tap 1.0 10.0

Kettle, Cold Water Tap 1.0 10.0

Hot Water Tap 0.66 0.0

Cold Water Tap 0.13 0.0

Tea Maker 0.0 35.0

Tea Maker, Hot Water Tap 1.0 35.0

Tea Maker, Cold Water Tap 1.0 35.0

Nothing 0.0 0.0

Table 6.1: Tea Temperature Capability

The optimal choices for fulfilling the Tea Temperature capability are the Kettle at cost £10 and

the Hot Water tap at cost £0. The rest of the choices are sub-optimal including the Tea Maker that

provides water at the same temperature MoP at the Kettle but at a much greater cost. The fact

that the Tea Maker also provides another capability Tea Flavour cannot be considered using this

approach.

58

Combination of systems Measurement of Performance Cost

Tea Bags 0.1 4.0

Tea Maker 0.0 35.0

Tea Maker, Hot Water Tap 1.0 35.0

Tea Maker, Cold Water Tap 1.0 35.0

Tea Maker, Kettle 0.0 45.0

Tea Maker, Hot Water Tap, Kettle 1.0 45.0

Tea Maker, Cold Water Tap, Kettle 1.0 45.0

Tea Maker, Tea Bags 0.0 39.0

Tea Maker, Tea Bags, Hot Water Tap 1.0 39.0

Tea Maker, Tea Bags, Cold Water Tap 1.0 39.0

Tea Maker, Tea Bags, Kettle 0.0 49.0

Tea Maker, Tea Bags, Hot Water Tap, Kettle 1.0 49.0

Tea Maker, Tea Bags, Cold Water Tap, Kettle 1.0 49.0

Nothing 0.0 0.0

Table 6.2: Tea Flavour Capability

Due to the Tea Maker having dependencies, the number of combinations of systems that need

to be considered has grown significantly larger for what is a small problem. There are likely to

be serious scalability issues when considering actual problems that arise with this technique. The

optimal choices for fulfilling the Tea Flavour Capability are the Tea Bags at cost £4, the Tea Maker

with Tea Bags and (Hot or Cold) Water Tap at cost £39 and nothing at cost £0.

Combination of systems Measurement of Performance Cost

Mug 1.0 4.0

Plastic Cup 0.1 0.2

Nothing 0.0 0.0

Table 6.3: Insulation Quality Capability

For the insulation quality capability, all three of the options shown are optimal. The option that

should provide the best capability possible at the lowest cost given by this approach is the Kettle,

(Hot or Cold) Water Tap, Tea Maker, Tea Bags and Mug at cost £53, however this is incorrect.

The best solution is just (Hot or Cold) Water Tap, Tea Maker, Tea Bags and Mug at cost £43 with

the Kettle. This solution is missed by this approach since the capabilities are being considered

independently of each other. While, it might be obvious in this trivial case, when the problems

become non-trivial this type of problem will become much harder to spot. In general, any system

that provides more than one capability is subject to errors using this approach.

Using nothing at all for the container is also considered to be a valid solution under this tech-

nique since while the Insulation Quality term of the weighted sum equation will be 0, the total

satisfaction of the Good Tea capability can be higher than 0 due to the Tea temperature and Tea

flavour capabilities being satisfied. Obviously, in practice you cannot have Tea without a container

and these types of issues would need to be manually addressed in this approach.

59

There is also the issue that when the number of possible dependencies between systems grows,

the number of combinations of possible systems that will need to be manually entered into Mea-

sures of Performance tables will increase exponentially making this approach infeasible for non-

trivial problems.

6.5.2 Considering the capabilities together

Whilst considering the capabilities together will avoid some of the problems with considering them

separately, the approach would need the MoPs for each combination of systems to be provided

manually. This is 2n entries in the MoP table where n is the number of possible components. In

this example, n would be equal to 7 and there would be 128 different combinations of systems to

be manually provided. This approach is effectively infeasible for any non-trivial problem due to

the significant amount of manual effort required.

6.5.3 Comparison with naive weighted sum based approaches summary

In summary, there are three main problems with naive weighted sum based approaches as follow:

1. The introduction of dependencies causes an exponential amount of work for the decision

maker to handle making the technique impractical for non-trivial problems.

2. Weighted sum based approaches cannot handle relationships for which any of the capabil-

ities being unfulfilled leads to no overall capability being produced. This is just one of

the relationships that the weighted sum based approaches cannot handle (see discussion in

section 4.4 for more information).

3. The capabilities in question can either be considered separately leading to incorrect answers

in the case where a system satisfies more than one capability, or together that leads to the

approach being infeasible due to an exponential amount of manual work being required by

the decision maker.

The CATMOS techniques tackles the three main problems as follows:

1. The technique avoids the problem of exponential work from dependencies by allowing the

decision maker to define parts of possible solutions using the concept of components, which

describe the individual systems and how they interact with each other.

2. The technique implicitly supports the relationship where no capability is produced if there

are missing dependencies and the CATMOS technique is capable of supporting any form of

more complex relationship using an external programming language; in the prototype tool

case, Lua [128, 129].

3. The technique avoids the third problem by using a conceptual model based on goal mod-

elling that implicitly supports the many-to-many relationship between capabilities and the

Defence Lines of Development.

60

6.6 Summary

In this chapter, we have briefly cover the parts of the problem identified in chapter 1 that the

CATMOS technique will address in the following three chapters. This has being followed by

explaining how the CATMOS technique will be situated in the larger picture of research on acqui-

sition problems and this has being followed up by looking at the problems with the current work

towards relating the Defence Lines of Development to capabilities. In the next chapter, we start to

introduce the CATMOS technique.

61

Chapter 7

Bridging the gap between the DLoD
and capabilities

7.1 Research Overview

In this chapter and the next two chapters the research results is presented focusing on the three

research gaps identified in section 1.3. The first research gap focuses on providing an objec-

tive method for transitioning from the desired capabilities to the Defence Lines of Development

(DLoD). In this chapter, the research that addresses this gap is explained, and this is followed

by a demonstration on the simple example of acquisition trade-offs in purchasing equipment for

making tea.

In the next chapter, the second research gap of finding and presenting trade-offs to the acquisi-

tion decision makers is described. This is applied to a common problem found in the search based

software engineering community of the Multi-objective Next Release Problem (MONRP) [130].

The novelties of using the CATMOS approach over existing approaches to the MONRP are then

discussed.

Finally, in chapter 9, the research towards addressing the third research gap, managing the

through life issues of capability based acquisition, is then covered. This is demonstrated using a

realistic military case study.

Some of the research ideas that contribute to this chapter have already been published by the

author in [1, 3].

7.2 Introduction

There is currently no working objective method for bridging the gap between artefacts acquired in

acquisition programmes (categorised by the DLoD) and produced capabilities. This is because of

the conceptual difficulty of mapping highly concrete acquisition programmes to the very abstract

notions of military capability.

The current state of the art objective methods rely on using weighted sum [18, 25]. These

methods tend be rather naive and can be as simplistic as giving each of the eight Defence Lines

of Development for a capability an equal weight and adding them together when they come into

62

service. The results of these methods do not survive trivial inspection. These methods are widely

known in the defence acquisition community to be incorrect [12, 18] as discussed in section 4.4.

A small example of the application of a weighted sum based method is shown in section 6.5.

The relationship between the DLoD and the produced capabilities is more complicated than

weighted sum, and appears to be domain specific, depending on the exact systems and the desired

capabilities. Additionally, according to Yue & Henshaw the relationship between the acquisi-

tion programmes, categorised by the DLoD, and the desired capabilities is many-to-many [12],

which makes the relationship even more complicated. To say that the relationship is many-to-

many means that each component can contribute to fulfilling more than one capability and each

capability can be satisfied by multiple different components meaning that neither the components

nor capabilities can be considered in isolation.

The question thus emerges of how to manage this relationship. According to Zachman [67]

acquisition can be categorised using the terms of ‘why’, ‘how’ and ‘what’. The move to capability-

based acquisition is effectively a transition from specifying acquisition problems in terms of ‘what’

(physical things) to specifying them in terms of ‘how’ (desired abilities). Capability-based acqui-

sition arises solely from the military domain; hence there is the question of whether an equivalent

technique to capability-based acquisition exists.

From the research field of early requirement engineering there is already an existing technique

called goal modelling that sits in the place of the ‘how’. A contribution of this thesis is the recog-

nition that goal modelling and capability-based acquisition both sit in the ‘how’ category from

Zachman’s framework [67] and though they have been developed independently, have substantial

similarities.

The two major goal modelling techniques are KAOS [21] and i* [22]. The closest of the two

techniques to capability-based acquisition is KAOS [21], as it considers goals belonging globally

to the whole system rather than i* that considers goals belonging to individual agents in the system

[22].

A capability (from capability-based acquisition) is conceptually equivalent to a goal in goal

modelling. Both capabilities and goals can be decomposed into sub-capabilities and sub-goals.

Both capabilities and goals can have real world measurements attached to them for evaluating

how well the capability or goal is met [27, 127].

Capabilities are eventually met by the acquisition programmes, which are categorised by the

Defence Lines of Development [12]. From now on, for clarity of writing we will define the

term Component to refer to ‘something acquired from an acquisition programme categorised by

the Defence Lines of Development’. Goals are eventually met by an agent: a system, person or

process [21]. A component from capability-based acquisition and an agent from goal modelling

are broadly speaking equivalent concepts. Both represent either acquirable or acquired things that

can satisfy the goal tree or capability requirements. The main difference is that the types of things

that can be acquired have been categorised differently, i.e. equipment and infrastructure from the

DLoDs are clearly systems whereas doctrine and concepts and training from the DLoDs are clearly

processes. Effectively, capability-based acquisition and goal modelling are equivalent.

A difference that we are imposing in CATMOS on components (to set them apart from agents)

is that components can have their own dependencies. This is due to a difference of scope between

63

the two techniques. KAOS goal modelling focuses on the acquisition of a single system where

dependencies between systems tend to be rare. In capability-based acquisition, when considering

acquisition of system of systems, system dependencies tend to be quite common. Since system

dependencies can be satisfied by multiple different systems each providing similar services, we

choose to model these dependencies as capabilities that need to be satisfied before the component

itself can be used.

A high level overview of the process behind goal modelling based on work by Lamsweerde et

al [21] and a high level overview of the process behind the CATMOS technique are given below

for a more detailed comparison.

Goal Modelling Process High-Level
Overview [21]

CATMOS Technique Process High-Level
Overview:

Identify top-level goals by asking ‘How’

questions.

Identify top-level capabilities by asking

‘How’ questions.

Decompose top-level goals into smaller more

manageable sub-goals.

Decompose top-level capabilities into smaller

more manageable sub-capabilities.

Discharge responsibility for satisfying these

sub-goals to agents (systems, people and pro-

cesses).

Identify existing and acquirable components.

Once all sub-goals are satisfied the goal

model is completed.

Identify the components’ abilities to satisfy

capabilities.

Identify the needed capabilities for the com-

ponents to function.

Identify costs for acquirable components.

Use tool support to automatically find the

trade-off space of possible completed goal

models.

Table 7.1: Comparison between Goal modelling and the CATMOS technique.

In a goal modelling technique such as KAOS [21], the acquisition decision maker begins by

identifying the top-level organisation goals and then repeatedly decomposes these organisational

goals into smaller sub-goals until there are agents (systems, people and processes) available that

can directly satisfy these sub-goals. The acquisition decision maker then assigns the responsibility

to satisfy these sub-goals to the relevant agents. Once there are no unsatisfied leaf sub-goals, the

goal model is considered to be complete. The main steps of the goal modelling process are shown

in the goal modelling process high-level overview in table 7.1.

The CATMOS technique has some notable differences. Firstly, we use terminology from

capability-based acquisition, hence the term capabilities instead of goals and components instead

of agents. In CATMOS, the acquisition decision maker begins by identifying the top-level or-

ganisation capabilities (goals) and then repeatedly decomposes these organisational capabilities

(goals) into smaller sub-capabilities (sub-goals) until there are components (agents) available that

can directly satisfy them.

Unlike goal modelling, the next step is not to directly assign the leaf sub-capabilities (sub-

64

Component

Capability Provision

Cost

Desired Measurement

QualitativeQuantitative

Provided Measurement

QualitativeQuantitative

Capability Desired Measurement

QualitativeQuantitative

Component Metamodel

Goal Tree Metamodel

Capability

decomposes
measuredBy

measuredBy

measuredBy

satisfiedBy

satisfiedBy

satisfies

has

provides

requires

0..*

0..*

0..*

0..*

0..*

0..*

0..*

1
1

1

1

1

1

1

Capabilities are connected to CapabilityProvisions via the satisfiedBy/satisfies
relationship. Completed Goal Models are composed from a single Goal Tree model
and multiple Component models connected together through this relationship.
The Component models can be either connected directly to the Goal Tree model or
as dependencies to other Component models through the satisfiedBy/satisfies
relationship.

Figure 7.1: CATMOS Conceptual Metamodel

65

goals) to the relevant components (agents). Instead, the next step in CATMOS is to define all the

existing and acquirable components (equivalent to systems & agents) individually. This is because

the assignment of sub-capabilities to components defines a single solution. Whereas we intend to

generate multiple solutions so we leave this undefined and allow the tool support to automatically

define the assignments for us when it generates each of the multiple solutions. Each component is

defined to have capability provisions that describe the capabilities (goals) that the component can

satisfy.

This forms an additional layer of abstraction compared to normal goal modelling. This allows

multiple components to be defined that all provide the same capabilities, meaning that multiple

components can be considered for satisfying the same capabilities in the technique. In goal mod-

elling once a sub-goal is satisfied by a system, person or process, the derivation of that part of the

goal tree stops.

The modularisation of the goal model into separate parts using an abstraction layer is a novel

contribution of the work. Since components are defined separately from the goal tree they can

have associated acquisition costs that are incurred when they are included within a particular

acquisition solution. They also have capability dependencies that represent needs that must be

satisfied by other components, before the component itself can be used in a solution. These two

additions are novel contributions of the work enabled by the modularisation of the goal model.

Once the acquisition decision maker has specified both the Goal Tree model, containing the

capability decomposition, and multiple Component models, it is then the job of tool support to

calculate completed Goal Models from these partial descriptions. In CATMOS, a Goal Model is

a Goal Tree with attached Components that satisfy the goal tree. The Goal Tree metamodel is

shown in figure 7.1. The tool support automatically generates multiple completed Goal Models

that correspond to the ‘optimal’ trade-offs that can be made by the acquisition decision maker.

This will be described in depth in Section 8. An overview of the main steps of the CATMOS

process is shown in table 7.1.

CATMOS has the concepts of both capabilities and capability provisions. A capability rep-

resents either a stakeholder objective or a component’s need that needs to be fulfilled by another

component before it can be used. A capability provision represents the ability of a component to

satisfy a capability.

Returning to the Component metamodel in figure 7.1, capabilities are annotated with measure-

ments. Capabilities in the Goal Tree are annotated with both the minimal necessary measurements

for the capability to be considered partially satisfied by a component and the benchmark measure-

ments that are the ideal wanted measurements from a component satisfying the capability.

CapabilityProvisions in the component models are annotated with the Measurements provided

by the Component. Needed Capabilities in the component models are the same as Capabilities in

the Goal Tree with minimal and benchmark measurements.

During evaluation desired Capabilities either directly in the Goal Tree or as dependencies to

Components can be in one of four states:

• Fully satisfied

• Partially satisfied

66

• Partially satisfied but with missing dependencies

• Not satisfied

Capabilities are evaluated by propagating the provided values up from the satisfying Compo-

nent’s CapabilityProvision’s Measurements and comparing them to the Capabilities’ critical and

benchmark values.

A Capability is fully satisfied if for all the Measurements on it, the provided value is greater

than the benchmark value meaning that all the wanted benchmarks have been met. A Capability is

not satisfied if for any of the Measurements on it, the provided value is less than the critical value

meaning that one of the critical measurements has not been met rendering the capability unusable.

A Capability is partially satisfied if all of its provided values are greater than the critical values

but one or more of the values is less than the benchmark value. A Capability is partially satisfied

but with missing dependencies if it would normally be partially or fully satisfied but one of its

needed Capabilities is either not satisfied or is partially satisfied but with missing dependencies

itself. This means that the not satisfied state propagates up the goal model reducing the states

of everything above it to at most partially satisfied, but with missing dependencies (not satisfied

capabilities simply remain not satisfied).

If the critical value on a Measurement is greater than the benchmark value, the Measurement is

assumed to be wanted to be as low as possible instead of as high as possible and the previous cri-

teria for the four states are changed with the greater than conditions becoming less than conditions

and vice versa.

In MODAF [23], only benchmark values and provided values are considered. The CATMOS

technique extends this with critical values to allow the partial satisfaction of capabilities to be

considered properly. MODAF also allows the definition of required ranges as upper and lower

bounds (e.g. a band of radio frequencies), this can be handled in the CATMOS technique by using

two measurements, one for the upper bound and one for the lower bound. So CATMOS can handle

capability measurements as defined by MODAF.

The satisfaction of capabilities is ordered. A fully satisfied capability is always more satisfied

than a partially satisfied capability and a partially satisfied capability is always more satisfied than

a partially satisfied capability with missing dependencies and a partially satisfies capability with

missing dependencies is always more satisfied than a not satisfied capability. Partially satisfied

capabilities and partially satisfied capabilities with missing dependencies are considered to be

satisfied between 0 & 1 by performing a linear evaluation. The linear evaluation is performed

using the formula:

satisfaction =
provided measurement from the system −minimal measurement acceptable

desired measurement −minimal measurement acceptable

A small example of evaluating the satisfaction is if 500 watts are wanted from a power gen-

erator, 250 watts are needed and only 450 watts are provided then the satisfaction for the power

capability is 80% (0.8 = (450.0 − 250.0)/(500.0 − 250.0)). Values above 100% are clipped to

100%. In the case of multiple measurements being used to measure the satisfaction of a capability

it takes the average of all the measurements.

The alternative formula for when measurements are desired to be low rather than high is:

67

satisfaction = 1 −
provided measurement from the system − desired measurement

maximal measurement acceptable − desired measurement

The usage of the linear evaluation on partially satisfied capabilities and partially satisfied ca-

pabilities with missing dependencies has two uses. The first is that it allows partial satisfaction

of a capability to different degrees, using the example above a solution that provides 450 watts

is almost always better than a solution that only provides 300 watts and whilst it may be desired

to fully satisfy all capabilities benchmarks due to the limited resources this is very unlikely to be

possible.

In the simple case of a single measurement on a capability the formula is just a linear scaling

between two bounds chosen by the acquisition decision makers and so is always adequate. In the

less simple case of multiple measurements on a capability where the results of the linear scaling

are averaged together it is not guaranteed to be adequate. In this case where it is not adequate,

the solution is to create a parent capability with a single measurement containing a script that

aggregates the values of the measurements together in the domain specific manner. Then instead

of marking the capability as a search objective, mark the parent capability as a search objective

meaning that the parent capability with the domain specific formula will be used during the multi-

objective search.

The approach taken in CATMOS is that there is a default behaviour for evaluating goals that

the acquisition decision makers can overwrite when is not appropriate to their needs. Similar work

by Letier & Lamsweerde [27] that annotates goals in a similar way to how this work annotates

capabilities avoids this problem entirely by having no default evaluation on goals. In their work

the acquisition decision maker needs to specific a formula for the evaluation of each goal that

needs to be evaluated.

The second usage for the linear evaluation is in supporting the multi-objective search technique

that will be introduced in the next chapter. Using a linear evaluation provides a smooth search

space for the search to work upon and this aids in finding better results. This is why the linear

evaluation is still performed on partially satisfied but with missing dependencies capabilities even

through the result is likely to be of less use to the acquisition decision makers. In the prototype

implementation, capabilities are given a value 0 for not satisfied, 0 - 1 for partially satisfied but

with missing dependency, 1 - 2 for partially satisfied and 2 for fully satisfied as explained in section

10.4.3.

The Goal Tree metamodel is similar to MODAF StV-2 [127] in that it defines capabilities in a

nearly identical way. MODAF StV-2 being a strategic viewpoint in MODAF that provides a tax-

onomy of the capabilities being used [127]. It is intentional that they are similar because MODAF

is an existing technique used for capability-based acquisition within the UK military acquisition

community. The definition of capability used by CATMOS includes qualitative measurements

from MODAF that are category-based with some qualitative measurements having values that

are considered to be greater or lesser than each other. The Component metamodel is unique to

CATMOS and has no direct equivalent in MODAF.

68

7.2.1 CATMOS Metamodel

CATMOS is underpinned by a metamodel that defines both the Goal Tree and Component models

and how they can be joined together. The use of a metamodel allows the application of sev-

eral MDE tools. A GUI interface has been semi-automatically generated from the metamodel

using EuGENia [131] and GMF [132]. Additionally, a textual interface to the tool has been semi-

automatically created using Xtext [133] and this is shown in section 7.5.

7.2.2 Aggregating Sub-goals

The top-level capabilities in the Goal Tree that decompose into sub-capabilities are not directly

satisfied by components. Instead they derive their value from their sub-capabilities. These ag-

gregations are largely domain-specific and so the CATMOS technique needs to allow almost any

formula to be used. Allowing the user to specify the aggregation using a Turing complete language

does this. Earlier versions of CATMOS used Epsilon Object Language [101] for this; however the

current version uses Lua [128, 129]. Any standard Turing complete language is acceptable. Non-

Turing complete languages may also be usable on a case-by-case basis. These formulas between

a capability and a sub-capability are generally conversions between Measures of Performance to

Measures of Effectiveness. Good examples of these types of formulas can be found in work by

Urwin et al [134] and Venters et al [83].

Lua [128,129] is a Turing complete language that was designed for embedding in programs to

allow the end-user to extend the programs behaviour [128, 129]. The language is widely used and

has extensive library support [128,129]. The CATMOS technique has, as a requirement, a need to

allow the end-user to specify complex relationships between parts of the goal tree and within the

individual components between their dependencies and provisions. It also has a requirement to

allow the technique to interface with external tools to be able to reuse information from existing

simulations, real-world data sets and mathematical models. Lua is able to meet these needs.

7.3 Tea Making - Example

For explanation purposes, we will now go through the CATMOS technique on an illustrative ex-

ample. The example that has been chosen is acquiring equipment to make ‘good’ tea. The example

has been chosen for explanatory purposes since it is a domain that almost everyone can understand.

The goal tree model and components model for tea making are shown in figure 7.2. Starting with

the goal tree model, the main wanted capability is Good Tea that is being assessed by a Tea Rating

measurement. The Good Tea capability decomposes into three sub-capabilities; the Tea Leaves

that are being used and their Flavour; the Water and its Temperature; and the Container and its

Insulation.

There are 7 components that exist or can be acquired in this example: the Tea Bags that provide

tea and cost £4; the Hot Water Tap that provides hot water; the Mug that is a insulated container

and costs £4; the Cold Water Tap that provides cold water; the Kettle that provides Water at 100 ◦C

if it is provided with Water from another source. The Kettle costs £10. Plastic cups that are an

uninsulated container and are cheap at 20p each. The Tea Maker that provides Water at 75 ◦C and

69

Tea Leaves with excellent flavour if it is provided with Water and Tea Leaves itself with the tea

having at least flavour ‘Good’. This means that the Tea Maker takes in Tea Leaves and improves

their flavour before passing them out into the Tea. The Tea Maker costs £35. The Tea Maker is

a good example of a system that has dependencies that need to be fulfilled before it can make

available its provisions. For example, the Tea Maker cannot provide hot water without first being

provided with water.

The leaf capabilities in this example all contain Measures of Performance (MoP) that are

directly satisfied by a corresponding component model. The only thing that is left unspecified

in figure 7.2 is where does the value of Tea Rating come from. This is example of the difference

between Measures of Performance (MoP) (section 2.4) and Measures of Effectiveness (MoE) (sec-

tion 2.5). The Tea Rating is a MoE and its value needs to be derived from the MoP of Flavour,

Temperature and Insulation. The CATMOS technique allows the specification of arbitrary formu-

las for deriving the values of measurements. The prototype tool uses Lua [128, 129] as described

in section 7.2.2 for this purpose. The formula itself can be obtained either from domain expert

knowledge, simulation or actual testing. In more complicated scenarios obtaining these formula

may be a difficult task. There is however work [83,134] that does derivate these types of formulas

for military scenarios. The function used in this example is shown in section 7.6. Earlier versions

of this research [3] used domain specific concepts for implementing the conversion between MoP

and MoE and this motivated the inclusion of a embedded programming language to allow the

conversion of the MoP to MoE without relaying on different domain specific concepts for each

problem.

The prototype tool provides both a GUI interface and a textual interface for specifying the

models. For the prototype tool, the textual interface has received more development for inputting

problems. The textual specification of the models shown in figure 7.2 is shown in section 7.5. The

Capability and Component parts are just direct translations from the graphical format shown in

figure 7.2. The FindTradeOff part contains the general settings for the prototype tool. Once the

problem has been input, the prototype tool then generates multiple completed goal models that

represent possible solutions.

An example of a completed goal model that has been automatically generated by the technique

is shown in figure 7.3. The completed goal model contains the initial goal tree model and several

of the component models that have been included to make up the solution. In this case the Tea

Maker, the Plastic Cup, the Tea Bags and the Hot Water Tap have being included along with the

initial goal tree.

Additionally, links have being created between CapabilityProvisions and Capabilities between

the Goal Tree and the Components and between the Components themselves showing how each

capability is being fulfilled in the solution. Links are only created when the CapabilityProvision

and the Capability have the same name. In this case, the Tea Leaves and Water from the Tea Maker

has been connected to the Tea Leaves and Water in the initial goal tree, Container from Plastic

Cups has been connected to Container in the initial goal tree and Tea Leaves from the Tea Bags

has been connected to the Tea Leaves dependency from the Tea Maker and the Water from the Hot

Water Tap has been connected to the Water dependency from the Tea Maker.

The goal model is considered to be complete when there are no dangling capability dependen-

70

cies. A capability dependency is dangling if there is no connected CapabilityProvision. When a

CapabilityProvision is joined to a Capability, the measurements from the CapabilityProvision are

passed up to the Capability (filling in the providedValue fields in the Capabilities’ measurements).

This is subject to a single caveat: that the Components dependencies are all at least partially sat-

isfied first. To be at least partially satisfied the provided value must be greater than the minimal

acceptable value, which is called the critical value. Using the critical value, the benchmark value

from the Capability and the provided value from the CapabilityProvision, the Capabilities sat-

isfaction level is evaluated. The evaluation is performed linearly between the criticalValue and

the benchmarkValue. As an example for the Tea Making measurement, the calculation performed

using the formula defined in section 7.2 is:

0.75 =
4 − 1
5 − 1

satisfaction =
providedValue − criticalValue

benchmarkValue − criticalValue

giving the Good Tea capability a satisfaction of 75%. The costs of all the included Components

are summed, giving a total acquisition cost of £39.20 for the solution.

Using the same problem description, other completed goal models can be created. An example

of another two completed goal models for the same problem description are shown in figure 7.4.

These have different levels of satisfaction and different costs from the first example. It should be

noted that the top example in figure 7.4 has the same overall satisfaction as the first example but

with a greatly reduced cost making the first example an inferior solution to it. How to decide which

solutions are considered to be good or bad is discussed in the next chapter. What’s important for

now is that multiple different solutions can be derived from the same problem.

71

Good Tea

Tea Leaves Water Container

Plastic Cup

Hot Water Tap

Water

Temperature 30ºC-70ºC

Temperature 50ºC

Kettle

Water
Temperature 100ºC

Tea Maker

Water
Temperature 75ºC

Tea Bags

Tea Leaves
Flavour Good

Flavour Good-Excellent Insulation Bad - Good

Tea Rating 1-5

Tea Leaves
Flavour Good

Water

Tea Leaves
Flavour Excellent

Water

Container
Insulation Bad

Mug

Container
Insulation Good

Cold Water Tap

Water
Temperature 10ºC

Goal Tree Model

£4

20p

£35

£4

£10

Component Models

Key:
Capabilities

Measurements

Components

Costs dependency

Figure 7.2: Tea Making Example, Goal tree and Component models

72

Good Tea

Water Container

Hot Water Tap

Water

Temperature 30ºC-70ºC

Temperature 50ºC

Tea Maker

Water
Temperature 75ºC

Tea Bags

Tea Leaves
Flavour Good

Tea Leaves
Flavour Good-Excellent Insulation Bad - Good

Tea Rating 1-5

Tea Leaves
Flavour Good

Water

Tea Leaves
Flavour Excellent

£35

£4

Partially Satisfied
The insulation is Bad

rather than Good

Plastic Cup

Container
Insulation Bad

20p

Fully Satisfied
The benchmark measurement
of Excellent is being provided.

Tea Rating 4

Fully Satisfied
75ºC is greater than the

benchmark of 70ºC

The measurements are passed up
the completed goal tree.

Flavour Good

Insulation BadFlavour Excellent Temperature 75ºC

Fully Satisfied
Water is being provided.

Fully Satisfied
The critical measurement
of Good has being met.

Total Acquisition Cost: £39.20

Partially Satisfied (0.75)
The Tea Rating measurement is
automatically derived from the

flavour, temperature & insulation
measurements.

The dependencies of the
Tea Maker are both satisfied hence
it is able to provide its provisions.

satisfies

Key:

Figure 7.3: Tea Making Example, Completed Goal Model

73

Good Tea

Water Container

Kettle

Water

Temperature 30ºC-70ºC

Temperature 100ºC

Tea Bags

Tea Leaves
Flavour Good

Tea Leaves
Flavour Good-Excellent Insulation Bad - Good

Tea Rating 1-5

£4

Fully Satisfied
The insulation is Good

and is wanted to be
Good

Mug

Container
Insulation Good

£4

Partially Satisfied
The benchmark measurement

of Good is being provided.

Tea Rating 4

Fully Satisfied
100ºC is greater than the

benchmark of 70ºC

The measurements are passed up the completed goal tree.

Insulation GoodFlavour Good Temperature 100ºC

Total Acquisition Cost: £18

Partially Satisfied (0.75)
The Tea Rating measurement is
automatically derived from the

flavour, temperature & insulation
measurements.

£10

Good Tea

Water Container

Hot Water Tap

Water

Temperature 30ºC-70ºC

Temperature 50ºC

Tea Bags

Tea Leaves
Flavour Good

Tea Leaves
Flavour Good-Excellent Insulation Bad - Good

Tea Rating 1-5

£4

Partially Satisfied
The critical measurement
of Bad is being provided

but the benchmark
measurement of Good is

not being satisfied.

Plastic Cups

Container
Insulation Bad

20p

Partially Satisfied
The critical measurement
of Good is being provided

but the benchmark
measurement of Excellent is

not being satisfied.

Tea Rating 2.1

Partially Satisfied
50ºC is greater than the
critical value of 30ºC but
less then the benchmark

value of 70ºC

Insulation BadFlavour Good Temperature 50ºC

Total Acquisition Cost: £4.2

Partially Satisfied (0.275)
The Tea Rating measurement is
automatically derived from the

flavour, temperature & insulation
measurements.

Figure 7.4: Tea Making Example, Additional solutions generated from the same problem descrip-

tion

74

7.4 Tea Making Textual DSL – Grammar

The CATMOS technique requires the user to provide information about the top-level capabilities

and how they decompose along with information about each of the existing components and ac-

quirable components that can be used in any potential solution. The information can be provided

in more than one way to the tooling but for explanatory purposes we will now show how the infor-

mation can be provided in a textual format. In the following section we explain both the grammar

for the textual format and in the next section we show the Tea making example rewritten using

the textual format. The full formal grammar definition for the CATMOS textual syntax is given in

appendix A.

The keywords used in the grammar given below are shown in bold. Places where the user can

enter data with a description of the wanted data is shown with < and > brackets. Normal sized ()

brackets are used in conjunction with ? for marking an optional section and with + for marking a

section that can appear 1 or more times and with * for marking a section that can appear 0 or more

times in the grammar. Larger () brackets have being used in the few places that () brackets occur

in the grammar to differentiate them from the section markers.

7.4.1 Problem Overview Information

Each problem definition in the grammar requires either a single FindTradeOffs block, which will

be explained here, or alternatively a single ThroughLifePlanning block, which will be explained

in section 9.4. The block is responsible for providing the tooling with basic information about the

type of search to perform, which components to use and how many and whether the various costs

should be minimised or maximised.

1 FindTradeOffs <scenarioName > {
2 popSize <searchPopulationCount > genCount <searchGenerationCount >
3 (ExistingComponent <componentName > <quantity >)*
4 (AcquirableComponent <componentName > <quantity >)*
5 (DesireLow <costType >)*

6 (DesireHigh <costType >)*
7 }

Figure 7.5: FindTradeOffs Block Grammar

The usage of the FindTradeOffs blocks tells the tooling to generate a Pareto front of results of

the designated search objective capabilities against the designated costs.

The searchPopulationCount and searchGenerationCount values are passed directly to the

multi-objective search algorithm and control the amount of computation effort that is to be placed

into the search.

The ExistingComponent line contains the name of a Component, which will be defined later

on in the problem definition, and how many of that Component already exists and can therefore

be used in an acquisition solution at no cost. The Cost information on a Component included this

way is ignored. Any number of ExistingComponents can be defined.

The AcquirableComponent line contains the name of a Component, which will be defined later

75

on in the problem definition, and how many of that Component can be acquired in an acquisition

solution. Unlike the ExistingComponents line Components included this way will have their costs

added to the total costs of the acquisition solution. Any number of AcquirableComponents can be

defined.

The DesireLow and DesireHigh lines specify that a Cost is to be either minimised or max-

imised during the multi-objective search. An example of this is you may wish to minimise the

amount of money used during an acquisition but maximise the amount of billable man hours used

during the same acquisition. The default setting for a Cost is for it to be ignored during the multi-

objective search. It is an error for a Cost to be both desired high and low.

7.4.2 Representing the top-level capabilities and their decomposition

The top-level capabilities that describe the problem are defined using the grammar block shown

below with the grammar block being included once for each wanted capability.

1 (standAlone)?
2 (s e a r c h O b j e c t i v e)?
3 C a p a b i l i t y <capabilityName > {
4 (Measurement <measurementName > {
5 (c r i t i c a l V a l u e <realNumber >
6 benchmarkValue <realNumber >)
7 |

8 (c r i t i c a l V a l u e s (<stringValue >(,<stringValue >)*)
9 benchmarkValues (<stringValue >(,<stringValue >)*))

10 (s c r i p t < s c r i p t >)?
11 }

12)*

13 (decomposes (<capabilityName >(,<capabilityName >*)))?
14 }

Figure 7.6: Capability Block Grammar

Capabilities are defined with the Capability keyword and require a capabilityName. A Ca-

pability can be preceded by the standAlone and searchObjective modifiers. The searchObjective

modifier designates the capability as a search objective to become one of the objectives for the

multi-objective search.

The standAlone modifier states that the Capability is not satisfied by any of the Components

directly. This is useful when used in conjunction with scripts for evaluating properties that belong

to the overall acquisition solution rather than just a single Component. Consider an aircraft made

out of individual components and each of the components has a weight. A Capability designated

as standAlone can be used in conjunction with a script to collect together the weights of every

Component in an acquisition solution to allow the overall weight of the airplane to be evaluated.

The standAlone Capability will still be evaluated even through it is not being directly satisfied by

any Component’s CapabilityProvision.

Each Capability can have any number of Measurements. Each Measurement has a critical

value and a benchmark value. The critical value is the minimum required for that Measurement

76

to be considered partially satisfied and the benchmark value is the minimal required for the Mea-

surement to be considered fully satisfied.

Each Measurement can optionally have a script attached. The script is evaluated when the

Measurement’s Capability is evaluated and is used to change the satisfaction level of the Mea-

surement. Lua is used in the prototype tooling however any Turing complete scripting language is

appropriate.

Measurements can be either quantitative where they deal with real number values or qualitative

where they deal with qualitative statements but each individual Measurement can only be one of

the two types. Qualitative statements can be set to be either higher or lower values than other

qualitative statements as shown later on. Note the larger curved brackets used in the qualitative

statement lines (8 & 9) are part of the grammar itself.

A Capability can be set to decompose into other sub-capabilities. This relationship between

Capabilities will be shown when the results are displayed graphically. Mechanically, it behaves

the same as the standAlone modifier, as it is assumed that the user will create Measurements on

the Capability with scripts that aggregate the values of its sub-capabilities together.

7.4.3 Component descriptions

Each Component block describes a single Component. Any number of Component blocks can be

defined. Components are only considered if a corresponding entry exists for them in the Find-

TradeOffs or ThroughLifePlanning block indicating that they are either an existing component, an

acquirable component or both.

1 Component <componentName > {
2 (C a p a b i l i t y P r o v i s i o n <capabilityName > {

3 (reuse <reuseTimes >)?

4 (Measurement <measurementName > {
5 (providedValue <realNumber >)
6 | (providedValues (<stringValue >(,<stringValue >)*))
7 (s c r i p t < s c r i p t >)?
8 })*

9 })*

10
11 (C a p a b i l i t y <capabilityName > {
12 (Measurement <measurementName > {
13 (c r i t i c a l V a l u e <realNumber >
14 benchmarkValue <realNumber >) |
15 (c r i t i c a l V a l u e s (<stringValue >(,<stringValue >)*)
16 benchmarkValues (<stringValue >(,<stringValue >)*))
17 (s c r i p t < s c r i p t >)?
18 })*

19 })*

20
21 (Cost <costType > <costAmount >)*
22 }

Figure 7.7: Component Block Grammar

77

Each Component must have a componentName and can have any number of CapabilityProvi-

sions, Capabilities and Costs in that order.

A CapabilityProvision has a name, which must be the same as the Capability it intends to

provide for. Along with any number of Measurements that should match the Measurements on the

Capability the CapabilityProvision intends to provide for. Measurements in a CapabilityProvision

have a provided value, instead of a critical value and benchmark value, which represents the value

provided by that Component for satisfying that Capability. As before in the top-level Capabilities

the Measurements can either be quantitative or qualitative but not both at the same time. Note the

larger curved brackets used in the qualitative statement lines (6, 15 & 16) are part of the grammar

itself. A CapabilityProvision can optionally have a reuse line that states the maximum number

of Capability instances that it can satisfy. No reuse line or a reuse line of 0 indicate that the

CapabilityProvision can be used an unlimited amount of times.

The Capabilities on the Component are defined in the same way as they are defined as part of

the top-level capabilities except they cannot be designated as standAlone or as a searchObjectives

and they cannot decompose into other sub-capabilities.

A Cost is defined to be of a certain type (i.e. money, man-hours, weight) and have an amount,

which is a real-numbered value.

7.4.4 Qualitative Values

There is a need when using qualitative values to establish a partial ordering on the qualitative

values to state that the values are greater or smaller than each other. For example if a transport

works in “Heavy Rain conditions” than it can be assumed to also work in Light Rain conditions.

These relationships are described using the Value keyword.

1 Value <stringValue > (<|>) <stringValue >

Figure 7.8: Qualitative Value statement

The format is Value A >B or Value A <B to define A is greater than B or A is less than B

respectively. The relationships are used when evaluating qualitative measurements satisfaction.

7.5 Tea Making Textual DSL - Example

The textual domain specific language (DSL) input is as follows:

1 FindTradeOffs TeaMaking { popSize 100 genCount 100
2 ExistingComponent "Cold Water Tap" 1 ExistingComponent "Hot Water

Tap" 1

3 AcquirableComponent "Tea Bags" 1 AcquirableComponent "Mug" 1
4 AcquirableComponent "Kettle" 1 AcquirableComponent "Plastic Cup" 1
5 AcquirableComponent "Tea Maker" 1
6 DesireLow "Money"

7 }

8
9 s e a r c h O b j e c t i v e

78

10 C a p a b i l i t y "Good Tea" {
11 Measurement "Tea Rating" { c r i t i c a l V a l u e 1.0 benchmarkValue 5.0

s c r i p t "output = TeaRating()" }
12 decomposes ("Tea", "Water", "Container")}
13
14 C a p a b i l i t y "Tea" {
15 Measurement "Flavour" { c r i t i c a l V a l u e s ("Good") benchmarkValues ("

Excellent") }}

16
17 C a p a b i l i t y "Water" {
18 Measurement "Temperature" { c r i t i c a l V a l u e 30.0 benchmarkValue 70.0

} }

19
20 C a p a b i l i t y "Container" {
21 Measurement "Insulation" { c r i t i c a l V a l u e s ("Bad") benchmarkValues (

"Good")}}

22
23 Component "Tea Bags" {
24 C a p a b i l i t y P r o v i s i o n "Tea" { Measurement "Flavour" {providedValues (

"Good") }}

25 Cost Money 4.0 }
26
27 Component "Hot Water Tap" {
28 C a p a b i l i t y P r o v i s i o n "Water" { Measurement "Temperature" {

providedValue 50.0 }}}
29
30 Component "Mug" {
31 C a p a b i l i t y P r o v i s i o n "Container" { Measurement "Insulation" {

providedValues ("Good")}}
32 Cost Money 4.0 }
33
34 Component "Cold Water Tap" {
35 C a p a b i l i t y P r o v i s i o n "Water" {Measurement "Temperature" {

providedValue 10.0}}
36 }

37
38 Component "Kettle" {
39 C a p a b i l i t y P r o v i s i o n "Water" {Measurement "Temperature" {

providedValue 100.0}}
40 C a p a b i l i t y "Water" {}
41 Cost Money 10.0 }
42
43 Component "Plastic Cup" {
44 C a p a b i l i t y P r o v i s i o n "Container" { Measurement "Insulation" {

providedValues ("Bad")}}
45 Cost Money 0.2 }
46
47 Component "Tea Maker" {
48 C a p a b i l i t y P r o v i s i o n "Water" {Measurement "Temperature" {

providedValue 75.0}}
49 C a p a b i l i t y P r o v i s i o n "Tea" { Measurement "Flavour" {providedValues (

"Excellent") }}

79

50 C a p a b i l i t y "Water" {}
51 C a p a b i l i t y "Tea" {}
52 Cost Money 35.0 }
53
54 Value "Excellent" > "Good" Value "Good" > "Bad" Value "Bad"

7.6 Tea Making - Scripts

As described previously in section 7.2.2, it must be possible to specify a script alongside the tex-

tural domain specific language for specifying the complex relationships between the capabilities

in the top-level decomposition.

In this case, the script has been specified using Lua. In the Lua script the function TeaRating()

is defined that specifies how a rating for tea can be derived from the temperature, flavour and the

insulation of the container of the tea. In this case, two hooks into the goal model are being used.

getScenarioMeasure gets the value of a measurement attached to a capability in the goal model.

canUseCapability returns whether the capability can be used i.e. the capability is satisfied and all

of the capabilities on the satisfying component are also satisfied and so are all of the capabilities

on the components that satisfy the satisfying capability and so on recursively. Other hooks are

available and are defined in section 10.3.5.

1 --Tea Rating Function - Domain Specific Knowledge of "Good Tea"

2 f u n c t i o n TeaRating()

3 --Get Measurements From Completed Goal Model

4 temperature = getScenarioMeasure("Temperature")

5 flavour = getScenarioMeasure("Flavour")

6 insulation = getScenarioMeasure("Insulation")

7
8 score = 0.0

9
10 --Temperature over 70 degrees doesn’t help

11 i f (temperature > 70.0) then temperature = 70.0 end
12
13 --Score based on Temperature

14 score = temperature / 70.0 * 3.0

15
16 --If Flavour Is Excellent Add 1 To Score

17 f o r a,b in pairs(flavour) do
18 i f (b == "Excellent") then
19 score = score + 1.0

20 end
21 end
22
23 --If in Insulated Cup Add 1 To Score

24 f o r a,b in pairs(insulation) do
25 i f (b == "Good") then
26 score = score + 1.0

27 end
28 end
29

80

30 --If any of the Tea, Water or Container is missing Score 0.

31 i f (canUseCapability("Tea") == 0 or canUseCapability("Water") == 0
32 or canUseCapability("Container") == 0) then
33 score = 0.0

34 end
35
36 re turn score

37 end

7.7 Tea Making Example - Pareto Front

Using techniques described in detail in the next chapter, CATMOS is able to generate a graph

showing the highest satisfaction for the ‘Good Tea’ goal at different costs (figure 7.9). Each point

on the graph refers to a different possible acquisition solution such as those shown in figures 7.3

& 7.4. All these different acquisition solutions have been generated from the same problem input.

Figure 7.9: Tea Making Case Study - Pareto Front

The graph shows on the top axis the highest ‘Good Tea Score’ found for the costs shown on

the left axis. There are five solutions shown and these are only the only generated solutions that

should be considered by the decision maker because all the other solutions will either have a higher

cost or a lower ‘Good Tea Score’ than the solutions shown on the graph.

81

7.8 Addressing Research Gap 1 - Technique Features

Whilst the basic features of CATMOS have been described already, we have avoided going into

full detail for all of the features for clarity reasons. We now do so, before the next chapter moves

on to discuss how multi-objective search is applied to the CATMOS technique.

7.8.1 Complex Goal-Tree Decompositions

The first feature to be discussed is handling of complex goal-tree decomposition. Capabilities in

TLCM are considered to decompose both by function and by area [23]. A functional decompo-

sition of a capability breaks it into smaller capabilities that represent smaller tasks. When put

together, these will lead to the completion of the larger capability. An area decomposition of a ca-

pability breaks the capability into multiple sub-capabilities, one for each of the environments the

capability operates in. For example ‘Scouting’ may be decomposed into ‘Scouting At Sea’ and

‘Scouting On Land’. The leaf capabilities are given direct measurements by satisfying systems;

however the capabilities that have been decomposed need to somehow aggregate their child capa-

bilities’ measurements. In practice these aggregations can be complicated, so simply providing a

weighted sum or averaging feature wouldn’t be sufficient.

To allow these aggregations to be performed, measurements are permitted to have attached

annotations that allow them to define their value in relation to the values of other capabilities,

measurements or external data sources. These annotations are currently being performed using

Lua [128, 129] though other programming languages or formalisations could be used. The re-

quirements on a formalism to be used for this depend on the application domain that the CATMOS

technique is being applied to. The Lua annotations are provided with multiple functions that hook

into the goal model allowing them to read values from the current goal model structure.

In capability based acquisitions, there are both Measures of Performance (section 2.4) and

Measures of Effectiveness (section 2.5). There is a need to convert between the Measures of

Performance, which measure the systems directly, and Measures of Effectiveness, which measure

how well the system performs within a scenario. In the Tea making example, the Tea rating, which

is a Measure of Effectiveness, is based on the tea’s flavour, the tea’s temperature and whether or

not the container is insulated, which are all Measures of Performance. How to convert between

the Measures of Performance, which will be found on the leaf capabilities, to the Measures of

Effectiveness, which will be found on the higher level capabilities in the Goal Tree, in general is

domain specific knowledge and requires expertise. This conversation may be done using simple

formulas from domain experts (as is done in work done under the NECTISE project [83, 134]),

existing datasets or full simulations. This means that the method provided must be flexible, which

is why a full programming language is used.

This feature is required for helping to address research gap 1, in relating to the satisfaction of

the higher level military capabilities to the acquisitions of the concrete things within the Defence

Lines of Development (DLoD). The feature is used by the Tea making case study, the Multi-

objective Next Release Problem case study in the next chapter and the realistic military case study

used in chapter 9.

82

7.8.2 Partial dependency satisfaction

The next feature to be discussed is handling of partial dependency satisfaction. This is where

a component’s dependencies are only partially met. Consider a fire hose that relies on a water

hydrant to provide water pressure to allow it put out fires. The ability of the fire hose to put out

fires depends heavily on the water pressure being provided by the water hydrant. There maybe

existing simulations or formulas that can be used to establish how well a fire hose can put out a

fire at different water pressures.

The measurement annotations discussed above can also be used to allow a component’s capa-

bility provisions to be defined in terms of the satisfaction of the component’s dependencies. Ad-

ditionally, the annotations can also be used to interface with external simulations or pre-generated

datasets for supporting more complicated relationships.

This feature is required to allow the effects of only partially fulfilling the dependencies of

a component within a system of systems has on the component’s performance. In a system of

systems, the systems involved will inevitability depend on each other to operate correctly. This

feature helps address research gap 1 by allowing the effects of the dependencies between the

various components, which are categorised by the DLoD, to be modelled so the effect it has on the

produced capabilities can be handled by the technique.

7.8.3 System of systems properties

Another feature of interest is system of systems properties. A system of systems property is a

property that is the result of multiple systems being used together. A basic example of this is

the total power usage of the system of systems is the sum of all the systems power usage or

alternatively the weight of an aircraft is the sum of the weight of its parts.

There needs to be a way in the CATMOS technique to support trade offs against these system of

systems properties. This is supported by allowing capabilities to be marked as standAlone, mean-

ing that it can be satisfied without any joining capability provisions. This is used in conjunction

with a script on a measurement in the capability to determine its level of satisfaction. In the two

examples just explained of power usage and aircraft weight a script can use the getAllMeasures()

hook to find out the total power usage or weight of the systems. The power usage and weight

of individual systems can just be specified as measurements attached to one of the component’s

capability provisions.

Whilst the concept of system of systems may refer to entire armed forces or parts thereof, it

can also refer to systems such as Aircraft, which are composed out of a large number of separate

systems being used together. In this case, the concept of properties belonging to the entire system

of systems is useful. There are also scenarios where things such as the total response time of mul-

tiple systems may wish to be measured. Measuring things like the total response time can already

be done without this feature using the existing capability decompositions however this feature is

still useful syntactic sugar in this case. This feature helps address research gap 1, bridging the gap

between the DLoD and capabilities, in some edge cases and otherwise is useful syntactic sugar for

the acquisition decision makers to use.

83

7.8.4 Capability Upgrades

Capability upgrades are supported by the CATMOS technique to cover situations where one sys-

tem is acquired to modify the capabilities of another system. For example, a sniper’s rifle could

be fitted with a laser sight to improve its accuracy. A component can contain capabilities upgrades

that describe the changes that component does to other components in the system of systems. A

capability upgrade targets a specific component and can add new capabilities, modify the mea-

surements on existing capabilities or delete existing capabilities from the specified component.

In military acquisition, the acquisition of modifications to existing systems to improve capabil-

ities on systems is commonplace and upgrading the capabilities provided by a system is supported

even by existing weighted sum based approaches [25]. Since the acquisition of modifications to

systems to improve capabilities is commonplace, the CATMOS technique also needs to support

this for helping to address research gap 1.

7.8.5 Capability Accumulations

Capability accumulations handle the situation when multiple providing systems add together to

form the same capability. This is best explained with an example. Consider a ‘Fire extinguishing’

capability belonging to a ‘Fire truck’. The ‘Fire extinguishing’ capability increases depending

on the number of ‘Fire trucks’ at the scene of the fire. The more ‘Fire trucks’ the larger the

fire that can be put out. This is dealt with in CATMOS by using the accumulation feature. A

measurement on the capability is set to be the accumulation measurement. Once this is done,

any number of capability provisions can be used in an acquisition solution to satisfy the same

capability. The accumulation measurement for example ‘Gallons of water per second’ takes the

sum of all the satisfying capability provisions measurements. Capability accumulations cannot be

supported by just annotating measurements in the goal model because it affects the structure of the

produced goal models in allow the same capability to be satisfied by multiple different solutions

simultaneously.

When dealing with real world scenarios such as demonstrated by the realistic military case

study in section 9.5, there is more to consider than just the question of whether or not a capabil-

ity can be achieved such as ‘Performing an artillery strike at range’ but also how much of this

capability is available for usage. Capability accumulation allows the concept of how much of a

capability is available to be considered and whilst it does not see usage in the Tea making example

or the Multi-Objective Next Release Problem it is made extensive use of in the realistic military

case study. This feature helps address research gap 1 by allowing the amount of a capability that

is produced by the components categorised by the DLoD to be considered.

7.9 CATMOS DSL Additional Notations excluding Through Life

Following on from the explanation given in section 7.4, we will now explain the remaining gram-

mar and syntax for the CATMOS DSL excluding the through life extensions covered in the next

chapter. The full formal grammar definition for the CATMOS textual syntax is given in appendix

A and is defined using Xtext [133].

84

The keywords used in the grammar given below are shown in bold. Places where the user can

enter data with a description of the wanted data are shown with < and > brackets. Normal sized (

) brackets are used in conjunction with ? for marking an optional section and with + for marking

a section that can appear 1 or more times and with * for marking a section that can appear 0 or

more times in the grammar. Larger () brackets have being used in the few places that () brackets

occur in the grammar to differentiate them from the section markers.

7.9.1 Scripting behaviour

Consider the following definition of a Capability:

1 standAlone
2 s e a r c h O b j e c t i v e
3 C a p a b i l i t y capabilityName {
4 Measurement myQuantitativeMeasurement {
5 c r i t i c a l V a l u e 50.0
6 benchmarkValue 350.0
7 s c r i p t "output = 250"
8 }

9 }

The Capability is considered to be standAlone so nothing will directly satisfy it. The Ca-

pability is also considered to be a searchObjective so its value will be maximised during the

multi-objective search. The Capability in this example gains its satisfaction level from the in-

cluded Measurement, which because it will never have a providedValue given to it from a Capa-

bilityProvision, it needs to set this value so it can be evaluated. This is done using the script in

the Measurement. In this simple case, the script sets the Measurement’s effective providedValue

to 250.0 by setting the output variable. This is then assessed between the critical value of 50.0 and

the benchmark value of 350.0 to give an overall satisfaction of 67% ((250.0-50.0)/(350.0-50.0)).

Scripts placed on Measurements in CapabilityProvisions that change the output value override the

existing providedValue on the Measurement before it is passed up through the satisfies relationship

to a Capability.

7.9.2 Capability Upgrades

The grammar and syntax for the capability upgrades has not yet been defined. This is an extension

to the Component grammar block and the new extended Component grammar block is shown in

figure 7.10.

In the new extended grammar, CapabilityUpgrades are placed within Components. They have

a name for the upgrade and a target component that they are going to change in some manner. They

also have a capability change type, which can be set to add, del or mod, for adding new Capabil-

ityProvisions, deleting existing CapabilityProvisions or modifying existing CapabilityProvisions

on the target component. The CapabilityChange contains a set of CapabilityProvisions, which

will be used by the desired change. When adding the CapabilityProvisions are added whole to the

target component. When deleting only the CapabilityProvisions name is used for selecting the Ca-

pabilityProvision to delete. When modifying the CapabilityProvisions name is used for selecting

85

1 Component <componentName > {
2 (C a p a b i l i t y P r o v i s i o n <capabilityName > {

3 (reuse <reuseTimes >)?

4 (Measurement <measurementName > {
5 (providedValue <realNumber >)
6 | (providedValues (<stringValue >(,<stringValue >)*))
7 (s c r i p t < s c r i p t >)?
8 })*

9 })*

10
11 (Capabi l i tyUpgrade <upgradeName > {
12 targetComponent <targetComponentName >
13 (Capabi l i tyChange <changeType > {
14 C a p a b i l i t y P r o v i s i o n <changedCapabilityProvisionName > {

15 (reuse <reuseTimes >)?

16 (Measurement <measurementName > {
17 (providedValue <realNumber >)
18 | (providedValues (<stringValue >(,<stringValue >)*))
19 (s c r i p t < s c r i p t >)?
20 })*

21 })*

22 })*

23
24 (C a p a b i l i t y <capabilityName > {
25 (Measurement <measurementName > {
26 (c r i t i c a l V a l u e <realNumber >
27 benchmarkValue <realNumber >) |
28 (c r i t i c a l V a l u e s (<stringValue >(,<stringValue >)*)
29 benchmarkValues (<stringValue >(,<stringValue >)*))
30 (s c r i p t < s c r i p t >)?
31 })*

32 })*

33
34 (Cost <costType > <costAmount >)*
35 }

Figure 7.10: Component Block Grammar

86

the corresponding CapabilityProvision on the target component and the all of its Measurements

values are updated to the new values where applicable.

7.9.3 Capability Accumulations

The grammar and syntax for capability accumulations, introduced in section 7.8.5, have not yet

been introduced. Both capabilities in the Goal Tree and on Components as dependencies can be

turned into a capability accumulation by adding the single optional accumulation line. An example

is:

1 C a p a b i l i t y "Fire extinguishing" {
2 accumulat ion "Water Gallons per second"
3 Measurement "Water Gallons per second" {
4 c r i t i c a l V a l u e 5.0
5 benchmarkValue 50.0
6 }

7 }

The use of the accumulation line allows the Capability to be satisfied any number of times by

CapabilityProvisions. Capability accumulations allow the consideration of quantities of acquired

Components to be considered. For example 5 ‘Fire Trucks’ providing 5 water gallons per second

will provide 25 water gallons per second towards the Fire extinguishing capability shown above.

A Measurement needs to be specified on the accumulation line and this specified Measurement

will be evaluated using the summation of all the providedValues on all the CapabilityProvisions

attached to it. CapabilityProvisions reuse values are taken into account hence if a CapabilityPro-

vision can be used twice it is able to provide double the value of its Measurement value (the named

measurement in the accumulation) to the Capability.

7.10 Summary

The research shown so far addresses research gap 1. The desired capabilities can be defined in

the Goal Tree model and the acquisition programmes in the Defence Lines of Development can

be defined as Component models. Then by using Capability as a common joining concept the

individual models can be brought together in different ways to create different acquisition plans.

These acquisition plans can then be evaluated by evaluating the contained measurements on the

Capabilities and Capability Provisions and checking the dependency satisfaction of the Compo-

nents. Different acquisition plans can be created from the same models by including different

models in the final solution and changing the structure of how the models connect together.

This chapter also showed that by adding capability provisions, adding component dependen-

cies, attaching costs to components, modularisation of components, etc. an effective technique can

be created for handling alternative goal tree derivations. This is demonstrated with multiple goal

models for the tea making example given in figures 7.3 & 7.4. Alternative goal tree derivations is

a recognised research area in goal modelling by Lamsweerde [24] but currently little to no work

has been done in exploring this research area.

In the next chapter, how to automatically generate large numbers of these Goal models that

represent different trade-offs for the stakeholders will be covered. The technique presented so

87

far enables the process of mapping from a set of desired capabilities to a set of acquisition pro-

grammes, which are categorised by the DLoD.

88

Chapter 8

Multi-objective Acquisition Trade-offs

In the previous chapter, we described a technique that relates a set of acquisition programmes to

a set of desired capabilities. The technique operates by taking a Goal Tree model and multiple

Component models and combines them together to create an evaluable acquisition plan. What was

not described is how to combine the models to produce ‘good’ solutions or even what a ‘good’

solution was.

What constitutes a ‘good’ solution? For the purposes of Through Life Capability Manage-

ment, a ‘good’ solution is one that maximises the satisfaction of the system of systems objectives,

whilst also minimising the costs. Increasing the satisfaction of the desired objectives generally

involves acquiring more systems and incurring more costs putting the two objectives of increas-

ing satisfaction and reducing costs against each other meaning that a trade-off needs to be found

between these two objectives.

It is however possible to keep the same level of satisfaction whilst reducing costs or keep

the same costs whilst increasing the level of satisfaction by finding more efficiently composed

solutions. At maximum efficiency these solutions are called Pareto optimal solutions.

Some of the research ideas that contribute to this chapter have already been published by the

author in [3], which covers applying the CATMOS technique to the Multi-objective Next Release

Problem (MONRP).

8.1 Pareto optimality

To precisely define a ‘good’ solution we need to introduce a well-established concept from the field

of economics: Pareto optimality. Pareto optimality can be applied to any situation where there are

multiple competing objectives; in this case, maximising all the capabilities whilst minimising all

the costs. A solution to a multi-objective problem is considered to be Pareto optimal when there

are no other solutions that dominate it. A solution is considered to dominate another solution when

it has a higher value for one of the objectives and for all other objectives it does not have a lower

value than the solution it’s dominating.

An example of Pareto optimality on two objectives is shown in figure 8.1. All of the Pareto

optimal points are considered to make up the Pareto front. For each of the Pareto optimal solutions,

there is no other solution that is better than them for both of the objectives. The objective for each

solution is to simultaneously maximise the values for both objective A and objective B. For the non

89

Figure 8.1: Pareto Optimality Example

Pareto optimal solutions there is another solution that is better than them for both of the objectives.

For the non Pareto optimal solutions: (2,2) is dominated by (2,3) and (3,2). (2,1) is dominated by

(2,2), (2,3), (3,2) and (5,1). (1,1) is dominated by (1,5), (2,1), (2,3), (2,2), (2,1), (3,2) and (5,1).

The concept of Pareto optimality is useful because if we take all the possible acquisition so-

lutions created from all combinations of possible components, we can discard any solution that

is not Pareto optimal: there will be a solution that is Pareto optimal that is strictly better than it

present in the solution set.

Research gap 2 addresses the multi-objective nature present in an acquisition problem, and on

giving acquisition decision makers the ability to make trade-offs between the various organisa-

tional goals and costs to the organisation. To address this problem, we can present the acquisition

decision makers the Pareto optimal solutions, which are all ‘optimal’ against the various objec-

tives; they can then choose the exact trade-offs they want to make.

The first issue is how to calculate these Pareto optimal solutions. Even on a moderate size

problem the number of combinations of Components and their inter-connections is sufficiently

large to be computationally infeasible to compute. For the realistic military case study, introduced

in section 8.3, leaving aside the inter-connections between the Components, just determining how

many of each Component should be acquired forms an initial lower bound for the search space

of 3.2 million possible acquisition plans. This is without considering the different possible inter-

connections between the Components that will further enlarge the search space greatly. For the

simpler acquisition problem of the Multi-objective Next Release Problem (discussed in section

8.3) it is considered to be computationally infeasible to compute all the solutions [130].

A common solution to addressing problems where finding all answers is computationally in-

feasible is to use metaheuristic techniques that aim to find good solutions instead of the exact

perfect solution [111]. Multi-objective search techniques extends metaheuristic techniques to han-

dle cases where there are multiple competing objectives [135].

90

8.2 NSGA-II

Multi-objective search techniques (section 5.5.1) are designed to addresses combinational prob-

lems with multiple objectives. In this case the multiple competing objectives are stakeholder

objectives and the overall costs and the combinational part is the chosen acquisition solutions

categorised by the DLoD and how they are linked together to produce a working solution. The

widely used algorithm NSGA-II [119] is being used in this work as it specialises in generating

Pareto fronts. The algorithm uses a novel selection function on top of a normal genetic algorithm

(section 5.5) to cause the genetic algorithm population to evolve into a Pareto front of solutions

instead of a single good solution. Multi-objective search algorithms are a type of meta-heuristic

technique, which is a general strategy for solving combinational problems. It does not solve the

problem in its own right. For each specific problem, multiple algorithms need to be defined to fill

in missing parts of the overall strategy. [117]

As a brief outline, using the NSGA-II algorithm [119] requires the definition of:

• Genotype - A representation of the solutions amenable to search operators. In CATMOS this

is a vector of triples representing the joins between the goal tree model and the component

models.

• Phenotype - A representation of the solutions that can be evaluated. In CATMOS this is a

completed goal model.

• Phenotype to Genotype mapping - A mapping that relates solutions in the form of a genotype

into a corresponding solution using the form of a phenotype. In natural biology, this is

the transformation between DNA (the genotype) and the animal or planet of interest (the

phenotype) [117].

• Breeding operators - Taking the genotype of several ‘parent’ solutions, the breeding opera-

tors create new ‘child’ solutions based on their parents. In CATMOS this is a double point

crossover operator, destructive mutation step and a repair step. Double point crossover splits

the two parents genotype into three segments and creates a new genotype by combing the

middle segment of one of the parents with the two side segment of the other [117]. The

destructive mutation step being used and the repair step being used are CATMOS specific

and will be explained in detail later on. However in general, the mutation step causes a small

amount of random change to the child genotype to replicate the effects of random copying

errors in DNA and the repair step fixes any errors caused by the crossover operator to make

the child genotype represent a valid solution [117].

• Evaluation function - Accepts a phenotype as input and returns the degree to which the

wanted objectives are met. This is evaluated in CATMOS using the method described in

section 7.3.

A flowchart of the overall CATMOS technique including the NSGA-II search operators is

given in figure 8.2. NSGA-II [119] is a genetic algorithm, inspired by biological evolution. The

first thing that needs to be defined with such algorithms is the genotype for the problem. In nature

91

St
ar

t
XT

ex
t D

SL
Ta

ke
 p

ro
bl

em
 d

es
cr

ip
tio

n
fro

m
 u

se
r

C
re

at
e

th
e

in
iti

al
 p

op
ul

at
io

n
us

in
g

a
ba

ck
tra

ck
in

g
pa

rs
er

C
ur

re
nt

 p
op

ul
at

io
n

m
em

be
rs

Br
ee

d
cu

rre
nt

po

pu
la

tio
n

m
em

be
rs

us

in
g

do
ub

le
 p

oi
nt

cr

os
so

ve
r

M
ut

at
e

ne
w

ly
 c

re
at

ed

po
pu

la
tio

n
m

em
be

rs
 a

t
lo

w
 p

ro
ba

bi
lit

y

M
ap

 p
op

ul
at

io
n

m
em

be
rs

 to
 g

oa
l

m
od

el
s

Ev
al

ua
te

 a
ll

po
pu

la
tio

n
m

em
be

rs
 v

ia
 th

e
go

al

m
od

el
s

an
d

ra
nk

 th
em

w
ith

 P
ar

et
o

fro
nt

 ra
nk

in
g

D
el

et
e

w
or

se
 h

al
f o

f t
he

po

pu
la

tio
n

m
em

be
rs

H
av

e
w

e
ru

n
fo

r t
he

w

an
te

d
nu

m
be

r o
f

ge
ne

ra
tio

ns
?

Pa
re

to
 F

ro
nt

 o
f

G
oa

l M
od

el
s

Pr
od

uc
ed

Pa

re
to

 F
ro

nt

C
AT

M
O

S
M

et
am

od
el

En
d

C
on

fo
rm

s
to

C
on

fo
rm

s
to

Ye
s

N
o

R
ep

ai
r p

op
ul

at
io

n
m

em
be

rs

Figure 8.2: Flowchart for the CATMOS technique

92

the genotype is the DNA of an organism and the organism itself is called the phenotype. The

computational equivalent of the genotype is usually a vector of values that can be in some way

mapped to the phenotype, the actual artefact of interest. The criteria for the design of the genotype

is that it is amenable to performing search operators. The most common breeding operator is

crossover with two different genotypes: parts from both are taken and a new child genotype is

formed, which is an easy operation to perform with vectors of triples. This is usually followed by

mutation where at low probability a value in the genotype is randomly changed. Mutation occurs

in actual biological DNA because the process by which the DNA strands are copied can make

errors. [117]

NSGA-II [119] is an adaption of normal genetic algorithms designed for supporting the gener-

ation of Pareto fronts of solutions rather than just a single best solution. Genetic algorithms work

by having a population of solutions and selecting the best solutions in the population via an eval-

uation function and breeding them together to produce the next generation of solutions. NSGA-II

changes the evaluation function to use non-dominated ranking. Normally, each solution would be

assigned a score directly from the evaluation function however in NSGA-II all the solution scores

are first calculated then each solution is assigned a non-domination score. The non-domination

score is how many other solutions dominate this solution per the description of domination above

(lower scores being better). The selection step uses the non-domination scores to guide the ge-

netic algorithm towards producing a Pareto front of solutions. NSGA-II contains a relatively fast

algorithm for computing the non-domination scores. The other innovation in NSGA-II is the use

of crowding distance, which is a method for determining how close each solution is on the Pareto

front to other solutions on the Pareto front and penalising closeness of solutions during selection,

to encourage solutions to spread out further along the Pareto front rather than all end up close

together on a small part of it. [117, 119]

The reason why we want the solutions to be spread out on the Pareto front is this allows the

acquisition decision makers to see a wide range of possible solutions to their problem allowing

them to make a more informed choice. This also prevents the technique from converging to a

single solution with the other solutions being only minor or trivial variants of each other that

provide minimal extra information to the acquisition decision maker.

The genotype for this problem is being defined as a vector of joins. More specifically, the part

of the problem we are interested in encoding is how the various Components are connected to the

Goal Tree and the other Components.

The genotype is therefore defined as a vector of triples:

<(sourceComponent, capability, targetComponent), (sourceComponent, capability,

targetComponent), etc. >

The triple (sourceComponent, capability, targetComponent) indicates that the sourceCompo-

nent provides the stated capability to the targetComponent. This means that the sourceComponent

has the capability as a CapabilityProvision and the targetComponent has the capability as a Capa-

bility and the satisfied-by relationship between the Capability and the CapabilityProvision is to be

connected.

The genotype contains sufficient information to form the phenotype. When forming the phe-

notype, the entire Goal Tree is automatically included in the solution and every Component men-

93

tioned in the sourceComponent or the targetComponent of the triples is included into the solution

(included in this sense means that the model is fully copied). The satisfied-by relationship be-

tween CapabilityProvisions and Capabilities in the Goal Tree is also made according to the triples.

The keyword ‘scenario’ is used as the targetComponent to indicate that the connection is to the

Goal Tree rather than another Component. The including into the solution of the Goal Tree and

the individual Component and the creation of the satisfied-by relationship between these parts is

demonstrated in the Tea making example in chapter 7 figures 7.2 & 7.3.

The genotype also contains an additional feature: Components that upgrade other Compo-

nents’ capabilities. This is supported by including triples (sourceComponent, upgradeName, tar-

getComponent) in the vector along with the normal joining triples. The upgrade triples are evalu-

ated first when forming the phenotype from the genotype as they alter the available CapabilityPro-

visions. The upgrades specified in the upgrade triples are applied from the sourceComponent to

the targetComponent. This also creates a dependency between the two automatically. Upgrades

can either add new capabilities on the target component, modify the measurements of existing

capabilities on the target component or delete capabilities on the target component. The actions

performed by an upgrade are contained within the Component model for the component providing

the upgrade. There is no difference in the genotype relating to what actions the upgrade performs.

It only contains the source and target of the upgrade.

An example of an application of an upgrade with the relevant components models, upgrade

triples and the resulting model fragment for the produced Goal Model is shown in figure 8.2. In

the example application, a Car is upgraded with Air Conditioning and a Diesel engine. Originally,

the Car only provides Transport with the fuel type of petrol. The Air Conditioning upgrade adds

the Air Conditioning capability to the Car and creates a dependency between the Car and it. The

Diesel Engine modifies the existing Transport capability and changes its fuel type to diesel. This

also adds a dependency between the Car and the Diesel Engine. The dependency is added to

represent that without the Diesel Engine the Car is now non-functional. This handles cases such

as if the Diesel Engine had as a dependency Diesel Fuel, the Diesel Fuel is now needed to move

the Car.

The two breeding operators that are being used are double point crossover and mutation. Dou-

ble point crossover is where two points along the two parent vectors are chosen, splitting them

into three parts [136]. A child genotype is created from the two parent vectors by appending the

left and right sections from one to the middle of the other [136]. Normally the vectors of elements

used in crossover are of the same length, however in this case the vectors can and are likely to

be different lengths depending on the number of connections used in the solution. This can have

undesired side effects as when crossover is repeatedly applied the same triple will appear multiple

times in the same solution. To counteract this, in CATMOS every unique triple of values is given

a unique identifier to indicate its positions along a virtual chromosome. These unique identifiers

are generated after the all the initial population members are created and are ordered (using whole

numbers). The double point crossover takes place on this virtual chromosome. Since the triples

effectively do not change position between crossovers on this virtual chromosome, the triples can

not be included twice within a child solution regardless of the number of times the crossover oper-

ator is applied. An example of the double point crossover using the virtual chromosome is shown

94

Air Conditioning Upgrade

Air Conditioning

£550

Car

Transport

£10000

Upgrade: Air
Conditioning
Target: Car
Type: Add

Diesel Engine

Transport

£1250

Upgrade:
Diesel Model
Target: Car

Type: Modify

Fuel Type: Petrol

Fuel Type: Diesel

Car

Transport

£10000

Fuel Type: Diesel
Air Conditioning

Air Conditioning Upgrade £550

Diesel Engine

Transport

£1250

Fuel Type: Diesel

Components:

Genotype Triples:

Result:

<Air Conditioning Upgrade, Air Conditioning, Car>, <Diesel Engine,Diesel Model,Car>

Upgrade: Air
Conditioning
Target: Car
Type: Add

Upgrade:
Diesel Model
Target: Car

Type: Modify

Key:
Capabilities

Measurements

Components

Costs dependency

Upgrade

Air Conditioning

Figure 8.3: The CATMOS Technique - Applying Upgrades

95

Double Point Crossover Example:

Parent A chromosome: <tripleA, tripleB, tripleC>

Virtual positions: 1, 2, 3

ParentB chromosome: <tripleB, tripleD, tripleE>

Virtual positions: 2, 4, 5

Choose two random positions on the chromosome.

Crossover just before 2 and just after 3.

Left side of child from parent A, selecting entries <2:

<tripleA>

Middle of child from parent B, selecting entries >=2 & <=3:

<tripleB>

Right of child from parent A, selecting entries >3:

<>

Resulting child chromosome:

<tripleA, tripleB>

Figure 8.4: Double Point Crossover - Example

in figure 8.4.

After crossover is applied, a repair step is then applied to the genotype. Since during crossover,

parts of different solutions are combined, the different parts may not connect to each other even

when it is possible for them to connect. To solve this and produce better solutions, for every un-

satisfied capability in the solution, if there is a corresponding capability provision not currently

connected to anything, then it is connected to the unsatisfied capability. In the case of multiple dif-

ferent options for making connections i.e. multiple capabilities and multiple capability provisions

with the same name, the connections are made randomly. The repair step in addition to providing

better solutions acts as an additive mutation.

The mutation step itself is purely destructive. Random triples are deleted from the child vector

at low probability. The advantage of deleting triples is that the costs of the solution are reduced

allowing smaller cheaper solutions to be found, possibly with reduced capability satisfaction. The

repair step already effectively acts as the additive mutation, so no further additive mutation is

required.

The phenotype of the goal model is created by taking the loaded model fragments and connect-

ing CapabilityProvisions from one component to another Component’s Capabilities as specified

in the connection triples. The upgrade triples are slightly more complicated in that the upgraded

Component is temporary modified to include the new CapabilityProvisions and a temporary capa-

bility dependency is created between the upgrading Component and the upgraded Component to

say that the upgraded Component cannot be satisfied until the upgrading Component is satisfied.

An evaluation function is needed to allow the meta-heuristic search algorithm to assess how

96

good each solution is. The evaluation function is demonstrated in the previous section (7.2) and the

exact algorithm used is given in section 10.4.3. It is applied to the corresponding phenotype, which

is constructed as described previously, for the genotype. After all the solutions in a population are

evaluated NSGA-II performs non-domination ranking on the values and these non-domination

rankings are used in the selection step [119].

An initial population of solutions is also needed to initialise the genetic algorithm. A naive

method to generate such a population is to create a vector populated purely by random valid triples.

This would be ineffective since most of the solutions generated in this manner will evaluate to

having no capability satisfaction at all, due to missing dependencies.

A better method, and the one used in CATMOS, is to use a custom algorithm to create the

initial population set. The use of the custom algorithm allows the initial population to be created

only with completed solutions where all the dependencies are fulfilled. This means that instead

of the genetic algorithm beginning with solutions that will have little to no satisfaction of their

objectives due to missing dependencies, the genetic algorithm will start with fully working so-

lutions and will be able to make incrementally better solutions as the search progresses. When

the initial population is created with invalid solutions, the genetic algorithm can stall in its search

progression as even though it breeds solutions to create new solutions, the new solution and the

old solutions both have no satisfaction of the objectives, making it impossible to tell which of the

solutions is better meaning the population does not converge to better solutions until it manages to

find working solutions by random chance.

The custom algorithm begins by adding all of the leaf capabilities from the Goal Tree to a

list of unsatisfied capabilities. Each component is treated as having the ability to satisfy a set of

capabilities (its capability provisions) and having a set of dependencies that are needed to be able

to use it.

Until the unsatisfied capability list is empty:

• Choose a random capability from the unsatisfied capability list.

• Choose a random component with the ability to satisfy that capability.

• Record the choice made as a genotype triple <sourceComponent, capability, (targetCompo-

nent or ‘scenario’ keyword) >.

• Remove the capability from the unsatisfied capability list.

• Add all of the components dependencies to the unsatisfied capability list.

When the unsatisfied capability list is empty, the genotype for a completed goal model has been

derived.

There is the minor issue that it is possible for the algorithm to become stuck with an unsat-

isfied capability that cannot be satisfied due to earlier choices. This is avoided by having the

algorithm backtrack; when it reaches an unsatisfiable capability, it reverses its earlier choices and

then proceeds to make new random choices preventing it from becoming stuck.

Since the custom algorithm makes random choices in creating the genotype for the completed

goal model, a population of random genotypes can be formed by simply repeatedly running the

algorithm. If a problem is completely unsolvable the backtracking parser will fail to find a solution.

97

By using the customisations shown previously, the NSGA-II algorithm [119] can search for a

Pareto front of solutions to present to the acquisition decision makers. The solutions provided by

the NSGA-II algorithm [119] are approximately rather than exactly on the Pareto front, since it

would be computationally impractical to find the exact solutions.

8.3 Multi-objective Next Release Problem - Case Study

To demonstrate CATMOS capabilities with regards to performing multi-objective trade-offs, we

are going to use the Multi-objective Next Release Problem (MONRP) as a case study. The

MONRP has become well established in the search based software engineering community as

a standard problem [28, 130, 137] and hence it makes sense to apply our technique and prototype

tool to it to establish a baseline against related work. MONRP is a suitable case study as it focuses

on performing a single acquisition whilst considering stakeholder trade-offs. The TLCM problem

is more complicated than the MONRP problem but this extra complexity will be covered by the

next case study in section 9.5. A preliminary version of the MONRP case study has been published

in [3]. Substantial improvements to the case study have been made since the original publication

and these are presented in this chapter.

The Next Release Problem (NRP) was originally defined by Bagnall et al [138] and has since

been revised by multiple authors. The problem centres on a software company that is planning

the next release of their software product [138]. They have multiple customers, each of who have

certain requirements they want to be implemented in the next release of the software. However

the software company is constrained by limited resources for implementing software requirements

before the next release. In the version of the problem we will be using [130], the objective is to

determine which requirements will be implemented for the next software release and to find the

best requirements to implement at each cost level to the software company. Each customer is con-

sidered to have a weighted importance to the software engineering company and each requirement

a weighted importance to the customer. The aim of MONRP is to find the solutions on the Pareto

front of customer satisfaction against costs [130, 138].

To get a clear idea of what the MONRP is and how we can solve it, we are first going to

look at a small instance of the problem. A high street shop is looking to replace its existing stock

management system and has contacted a software developer who has quoted them different prices

for implementing different pieces of the stock management software. There are effectively two

customers of interest: the first is the Shop Manager who owns the store and has the most say in

any system to be implemented. The second is the Shop Clerk who has been hired by the Shop

Manager to run the store’s day-to-day operations. The software developer assigns weights of

importance to the two customers, the Shop Manager and the Shop Clerk and those in turn assign

weights of importance on the individual requirements.

The Shop Manager with weighting 0.6 has three requirements:

98

Requirement Weighting

Monthly Reports 0.4

Email Notifications 0.2

Automatically Generating Orders 0.4

The Shop Clerk with weighted 0.4 has three requirements:

Requirement Weighting

Easier Stock Handling 0.5

Better User Interface 0.4

Automatically Generating Orders 0.1

Normally, in the NRP and MONRP, all requirements are considered to be implemented as a

singular addition to a software package with a cost to implement. CATMOS can support more fine-

grained problem descriptions; it can capture software features being implemented independent of

the requirements they fulfil. This allows the consideration of alternative solutions to meeting re-

quirements, which is needed for supporting acquisitions trade-offs or evaluating alternative system

architectures against each other. This is done by modelling software features as components that

provide capabilities separately from modelling software requirements as capabilities in a goal tree.

Returning to the example, there are multiple software features that the software developer is

willing to provide at a price to the high street shop. These are:

• Reusable stock management system base code. This is reusable code from a previous job

by the software developer and costs £400 to purchase and is necessary for any of the other

features.

• Stock-reordering algorithm. The stock-reordering algorithm calculates when stock is going

to run out based on current demand and change in stock levels. This software feature only

depends on the stock management system itself and costs £400. This software feature satis-

fies the requirement for automatically generating orders by the Shop Manager and the Shop

Clerk.

• Email notifications. This feature generates an automatic notification to the Shop Manager

when stock is running low. This solves the Shop Managers requirement and only costs £300.

It depends on the stock-reordering algorithm being implemented first.

• Monthly reports. This feature provides detailed reports of stock flow each month to the Shop

Manager it costs £250 and depends on just the Stock Management System.

• Barcode scanning system. This system replaces the existing manual input system for track-

ing the stock performed by the Shop Clerk and provides the requirement of better stock

handling. It costs £450 due to equipment costs.

• Custom written GUI. This software feature is a new custom written GUI for the Shop Clerk

and fully meets the requirement for a better user interface by the Shop Clerk. This feature

costs £250 and depends solely on the reused stock management code.

99

• Pre-written GUI. This software feature is a pre-written GUI used in a previous job by the

software developer. It partially meets the requirement for a better user interface but will

only cost £50.

The pre-written GUI software feature demonstrates two benefits of using CATMOS not present

in other techniques used on the Next Release Problem. The first benefit is that two independent

software features can explicitly satisfy the same requirement. For example, two different software

features can satisfy the better user interface requirement. The second benefit is being able to cap-

ture partial satisfaction of requirements. The first benefit corresponds to trade-offs in the software

architecture [3] whereas the second benefit is the support of continuous variable requirements,

which was stated as an open research question by Zhang et al [28].

8.3.1 MONRP To CATMOS Overview

When converting problems from the MONRP to CATMOS, the customers and their individual

requirements are changed into capabilities with the customers decomposing into their individual

requirements. A top capability can be added that decomposes into all the customers to measure the

weighted sum of their satisfaction. CATMOS also has a requirement / solution split, in not only

do we need to say we want the requirement we also need to say what provides the requirement.

In the MONRP case, this means that a component needs to be created for each requirement that

provides the satisfaction of that requirement as a capability provision. The requirement’s costs and

dependencies are added to that component.

8.3.2 CATMOS DSL Explanation - MONRP Case Study Problem

This problem has been expressed using the CATMOS DSL shown in section 8.4. Firstly, there is an

‘overallSatisfaction’ capability that is used to represent the total satisfaction of all the customers

subject to the software developer’s weights. The ‘overallSatisfaction’ capability is decomposed

into each of the customers represented as capabilities. In this case the ‘Shop Manager’ and the

‘Shop Clerk’. Each customer then decomposes into their individual requirements (e.g. Monthly

reports, Email notifications, etc.) also represented as capabilities. This forms the overall Goal

Tree for the problem.

The ‘overallSatisfaction’ capability is annotated by a measurement with a critical value of 0.0

and a benchmark value of 1.0. An in-line script is used to aggregate the satisfaction levels of all

the customers and apply the software developer’s weights. The customers are likewise annotated

by a single measurement each with critical value of 0.0, benchmark value of 1.0 and an in-line

script that aggregates the satisfaction of all their requirements subject to the customer’s weights.

Most of the requirements can either be fully fulfilled or fully unsatisfied and in which case they

need not be annotated with a measurement. Requirements that can be partially fulfilled need to

be annotated like the ‘Better Userinterface’ with a measurement with a critical value of 0.0 and a

benchmark value of 1.0. This allows the use of continuous variable requirements in satisfying the

requirements.

The software features are captured as components. Each component lists the capabilities it

provides (which in this case are the requirements it satisfies) as capability provisions. Dependen-

100

cies are handled by listing required capabilities on the component with the providing component

listing the relevant capability provision. An example of this is ‘Stock Management System’ that

provides the capability ‘Stock Management System’ that is then required by other components.

The cost to acquire each component is listed as well on the component.

The top part of the DSL code is the technique’s settings. This includes the population size

and generation count that affect the accuracy of the search results. The components that can be

acquired during the search and how many of each is available. In the MONRP this is always one

of each component. The last setting is that the cost ‘Money’ is desired to be as low as possible.

This forms one of the objectives in the search. The other objective is the maximisation of the

overallSatisfaction capability set by using the keyword ‘searchObjective’ in front of it.

8.3.3 CATMOS Runtime

As an example of the algorithm’s runtime using population size 200 and generation count 200 for

the algorithm an average run (averaged over 5 runs) takes 93.4 seconds (range 71 - 127 seconds)

running on a single core on a MacBook Air Mid 2011 (Intel Core i5 1.7Ghz, 4GB 1333 MHz

DDR3). A generated Pareto front from the runs is shown in figure 8.5. It should be noted that

because of the stochastic nature of the algorithm, the Pareto front slightly varies between runs.

This means that slightly different trade-off points are presented to the decision maker between

runs; however this is not normally a problem because the differences are small. It should also

be noted that the produced Pareto front is an approximation. This can be seen by looking at the

left most point with no produced customer satisfaction but some cost. The run included one of

the components in the result where the optimal result for cost equals 0 is to purchase nothing at

all. All of the points are related to corresponding goal models allowing the decision makers to

examine the solutions for themselves.

8.3.4 Example Solution

An example solution is shown in figure 8.6. The production of the corresponding goal models

allows the decision maker to check the produced acquisition solutions and see not only included

components but also how they work together to achieve the desired result. The graphical notation

currently produced by the prototype tool is rather coarse. This would be a target for improvement

in commercialisation of the work. Capabilities are represented with boxes containing a name

and a satisfaction level of ‘Green’, ‘Yellow’ & ‘Red’. Green means fully satisfied, yellow means

partially satisfied above the critical measurement levels and red means not satisfied. Components

are also represented with boxes but contain a name with a number instead of a satisfaction level.

The number identifies which component is being referred to in the case of multiple components

with the same name been acquired. Capabilities only contain their measurements. Component

boxes are split into three sections and contain capability provisions in their top box, capability

dependencies in their second box and in their third box contain costs. Capability decompositions

and capabilities being satisfied are shown using simple arrows.

Another advantage of our approach over existing techniques for the NRP is that our tool is

more generic and supports the generation of datasets for more than 2 objectives on the Pareto

front. A 3 dimensional Pareto front for the problem is shown in figure 8.7. The 3D Pareto front

101

Figure 8.5: Shop Keeper Example - Pareto Front of Satisfaction vs. Cost

102

Figure 8.6: Example Goal Model Solution

Figure 8.7: Shop Keeper Example - 3D Pareto Front

103

Figure 8.8: Pareto Front For MONRP 100 Customers 200 Requirements

104

has the Shop Manager satisfaction on one axis, the Shop Clerk satisfaction on the other axis and

the line height on the plot between the two axes is the cost. An example of the tool being run on

a larger problem with 100 customers and 200 requirements is shown in figure 8.8. The algorithm

complexity is typically O(n2) (see section 11.2).

8.4 Shop Keeper Textual DSL Input

The following is a textual specification of the shop keeper case study problem. The grammar and

syntax are as described previously in section 7.4.

1 FindTradeOffs ShopCaseStudyNRP { popSize 200 genCount 200
2 AcquirableComponent "Email Notifications" 1
3 AcquirableComponent "Stock Reordering Algorithm" 1
4 AcquirableComponent "Invoice Generator" 1
5 AcquirableComponent "Stock Management System" 1
6 AcquirableComponent "Monthly Report" 1
7 AcquirableComponent "Barcode Scanning System" 1
8 AcquirableComponent "New GUI" 1
9 AcquirableComponent "Pre written GUI" 1

10 DesireLow "Money" }

The top part defines the problem’s name, the population count for the multi-objective search

algorithm, the generation count for the multi-objective search algorithm, each of the acquirable

components to include in the search and that there is one of each of them and that the cost ‘Money’

should be minimised.

1 C a p a b i l i t y overallSatisfaction {
2 Measurement weightedSatisfaction {
3 c r i t i c a l V a l u e 0.0 benchmarkValue 1.0
4 s c r i p t "output = 0.6 * getCapability(\"Shop Manager\") +

0.4 * getCapability(\"Shop Clerk\")" }

5 decomposes ("Shop Manager", "Shop Clerk") }

The overall satisfaction capability represents the overall weighted customer satisfaction. The

small in-line script performs weighted sum on the two customer satisfactions. The overall satis-

faction capability is considered to decompose into the customers (Shop Manager & Shop Clerk).

1 s e a r c h O b j e c t i v e
2 C a p a b i l i t y "Shop Manager" {
3 Measurement "Shop Manager Satisfaction" {
4 c r i t i c a l V a l u e 0.0 benchmarkValue 1.0
5 s c r i p t "output = 0.4 * getCapability(\"Monthly Reports\") +

0.2 * getCapability(\"Email Notification\") + 0.4 *

getCapability(\"Automatically Generating Orders\")"}

6 decomposes ("Monthly Reports", "Email Notification", "Automatically
Generating Orders") }

7
8 s e a r c h O b j e c t i v e
9 C a p a b i l i t y "Shop Clerk" {

105

10 Measurement "Shop Clerk Satisfaction" {
11 c r i t i c a l V a l u e 0.0 benchmarkValue 1.0
12 s c r i p t "output = 0.5 * getCapability(\"Easier Stock

Handling\") + 0.4 * getCapability(\"Better

Userinterface\") + 0.1 * getCapability(\"Automatically

Generating Orders\")" }

13 decomposes ("Easier Stock Handling", "Better Userinterface", "
Automatically Generating Orders") }

The two customers are defined to have a satisfaction that depends on the weighted sum of the

satisfaction of the requirements they desire. This is again done using a small in-line script. They

are also considered to be the search objectives for the multi-objective search via the ‘searchObjec-

tive’ keyword. The customers are both considered to decompose into the requirements they desire.

1 C a p a b i l i t y "Monthly Reports" {} C a p a b i l i t y "Email Notification" {}
2 C a p a b i l i t y "Automatically Generating Orders" {} C a p a b i l i t y "Easier Stock

Handling" {}

3
4 C a p a b i l i t y "Better Userinterface" { Measurement "User Satisfaction" {

c r i t i c a l V a l u e 0.0 benchmarkValue 1.0 } }

All of the requirements are then defined as capabilities to indicate they are wanted things

during the acquisition. The ‘Better Userinterface’ capability has a measurement to allow it to be

partially satisfied between 0.0 and 1.0.

1 Component "Email Notifications" {
2 C a p a b i l i t y P r o v i s i o n "Email Notification" {} C a p a b i l i t y "Stock

Reordering Algorithm" {} Cost Money 300.0 }
3
4 Component "Stock Reordering Algorithm" {
5 C a p a b i l i t y P r o v i s i o n "Stock Reordering Algorithm" {} C a p a b i l i t y "

Stock Management System" {} Cost Money 400.0 }
6
7 Component "Invoice Generator" {
8 C a p a b i l i t y P r o v i s i o n "Automatically Generating Orders" {} C a p a b i l i t y

"Stock Reordering Algorithm" {} Cost Money 300.0 }
9

10 Component "Stock Management System" { C a p a b i l i t y P r o v i s i o n "Stock Management

System" {} Cost Money 400.0 }
11
12 Component "Monthly Report" {
13 C a p a b i l i t y P r o v i s i o n "Monthly Reports" {} C a p a b i l i t y "Stock

Management System" {} Cost Money 250.0 }
14
15 Component "Barcode Scanning System" {
16 C a p a b i l i t y P r o v i s i o n "Easier Stock Handling" {} C a p a b i l i t y "Stock

Management System" {} Cost Money 450.0 }
17
18 Component "New GUI" { C a p a b i l i t y P r o v i s i o n "Better Userinterface" {

Measurement "User Satisfaction" { providedValue 1.0 } }

106

19 C a p a b i l i t y "Stock Management System" {} Cost Money 250.0 }
20
21 Component "Pre written GUI" { C a p a b i l i t y P r o v i s i o n "Better Userinterface" {

Measurement "User Satisfaction" { providedValue 0.4 } }
22 C a p a b i l i t y "Stock Management System" {} Cost Money 50.0 }

The software features are defined as components that provide certain software requirements,

have a cost and optionally require another software requirement to be implemented first. The

‘Pre written GUI’ component uses a measurement on its capability provision to provide a partial

satisfaction of 0.4 to the requirement.

8.5 Contributions to the Multi-objective Next Release Problem

In published work [3] by the author, the CATMOS technique was shown to offer a number of

specific novelties when applied to the Multi-objective Next Release Problem (MONRP). These

novelties are due to the CATMOS technique being designed to handle the more complicated ac-

quisition problem of Through Life Capability Management (TLCM).

• Continuous variable requirements. A stated research challenge for work on the Next Release

Problem was the handling of continuous variable requirements [28]. These are requirements

that can be satisfied over a real number. For example, a web server may have a minimal

requirement to serve a webpage within 300ms and a desired requirement to serve a webpage

within 100ms. Our approach allows the requirement to be treated as not satisfied, satisfied

or partially satisfied to a degree between 0 & 1 on the real numbers. In previous work

[130, 138–140], a requirement may only be satisfied or not satisfied. [3]

• Visualisation of solutions. An issue in the NRP is to not only find the ‘best’ solution but

to also explain to the stakeholders why the solution is good [28]. Our approach partially

supports this by using a graphical domain specific language to visualise solutions so that

stakeholders can understand them. [3]

• Continuous Release Support. Our technique includes support for releasing over continuous

time periods, not just a single release or a couple of release dates like previous existing

techniques for solving the Multi-objective Next Release Problem. This feature is shown in

the case study in chapter 9.

• Technique Flexibility. The technique being designed for a more encompassing problem than

dedicated Next Release Problem techniques is able to support things such as generating

Pareto fronts with more than 2 dimensions. An example of this is there being two customers

and generating a 3 dimensional Pareto front with the two customer’s satisfaction on axis and

a cost on the third axis. Another example is software features that can alter the properties of

other software features. [3]

107

8.6 Summary

In this chapter, we have covered the application of multi-objective search to the CATMOS tech-

nique to automatically produce a Pareto front of acquisition plans. So far we have covered what

is required to perform capability management rather than Through Life Capability Management

(TLCM). In the next chapter, we cover the through life extensions to the work presented in this

chapter to allow the technique to address the TLCM problem as a whole. This is followed by

performing the CATMOS technique on a realistic military case study.

108

Chapter 9

Scheduling Acquisitions Through Life

9.1 Introduction

In previous two chapters, we have introduced a technique for managing acquisitions via Capability

Management. In this chapter, we extend that technique to deal with the through life aspects of

Through Life Capability Management (TLCM) to address research gap 3 of the thesis. We begin

by briefly discussing the through life aspect of TLCM and what the problems are in supporting

it before moving on to provide details of our approach to it. Next, we provide new grammar and

syntax extensions for supporting the through life aspect along with a new metamodel. Finally,

we will perform a case study using CATMOS on a realistic military acquisition scenario. The

application of the CATMOS technique to the realistic military case study has been published in [1].

9.2 Through Life Extension to CATMOS

In any System of Systems, not all the systems will be acquired at the same time; instead they are

gradually acquired over time. Systems will also eventually retire. This can lead to capability gaps

where systems go out of service before replacements are introduced [16]. Another major issue is

that of budgetary constraints that prevent large numbers of system being acquired simultaneously.

This means that acquisitions need to be scheduled over large periods of time. Since the acquisition

of systems can depend on the acquisition of other systems, this leads to imposing a temporal

ordering on the acquisition. For addressing this problem, we both need to be able to schedule the

acquisitions over time with temporal constraints and need a way to identify capability gaps before

they occur.

In the CATMOS technique to handle through life concerns, the user needs to provide the

following information:

• When each capability is wanted, its start and end date.

• When existing components come into and leave service.

• How long it takes for an acquired component to come into service and if applicable when

does it then leave service.

• The costs for an acquired component and when they need to be paid.

109

• Whether the acquired component needs another acquired component to come into service

first before it can be acquired.

• The overall budget information of when resources are available for acquisition.

With this information the CATMOS technique can schedule the acquisition plans it makes and

reevaluates their fitness in accordance with the temporal constraints.

The information for when capabilities are wanted is provided by the end user annotating the

capabilities with a start and end date. Existing components are annotated with the date they came

into service and if applicable when they will leave service. Acquirable components need to be

annotated with how long it takes to acquire them and their lifespan if applicable. Additionally,

any costs associated with acquirable components need to be annotated with when they will occur

relative to the acquisition and whether there are any repeating costs such as wages or maintenance

costs that need to be considered.

Previously, CATMOS was used to generate a Pareto front of results of capability against costs.

When performing through life acquisitions with CATMOS, it can still do that but more likely the

decision maker wants CATMOS to find solutions that fit within their budget rather than what they

would gain or lose by adding more or less budget. For this, since the acquisitions take place over

time, CATMOS needs to know both the resources available for performing the acquisitions and

when they are available so CATMOS can schedule the acquisitions of components around these

constraints.

9.3 CATMOS technique modifications

For the through life extension, the CATMOS technique needs to be modified in several ways.

The first modification is to components and their dependencies. Components are unable to use

their dependencies to satisfy them until the dependencies have come in to service. Additionally,

capability dependencies of components can be marked as ‘sequential’ for supporting cases when

the acquisition of a component cannot begin until another component is in service. This can occur

when the acquisition of a component depends on design decisions made in a previous acquisition.

The scheduler takes this information and ensures that the component will not be acquired until the

component satisfying the capability dependency is already in-service.

The technique also needs to be given a designated time period during which it will consider

scheduling its acquisitions between otherwise the technique could suggest starting to acquire a

component yesterday.

When using the through life extension to the CATMOS technique, components cannot be

acquired until there are sufficient resources available. Scheduling is carried out as a separate

step in the genetic algorithm after the phenotype has been formed but before it is evaluated. The

scheduling algorithm is used in a meta-heuristic search algorithm meaning that in a typical run it

will be called at least 10,000 times and therefore the scheduling algorithm needs to be fast. The

number of calls is based on the typical run sizes used for the simpler MONRP problem [130].

This is achieved by making the scheduler make only one pass of the solution in chronological

order. The scheduler takes the locally greedy options at each point meaning while it is likely

110

to produce good schedules the produced schedules are not guaranteed to be optimal. This is a

performance vs. accuracy trade-off. The vast majority of scheduling problems should be simple

enough that taking the locally greedy options will result in the optimal schedule. In the other

cases, the genetic algorithm has the ability to alter the connections between the parts of the goal

model that can significantly affect the way the solution is scheduled. The genetic algorithm will

select for solutions that can be better scheduled due to selective pressures.

The scheduler starts by looking at the earliest needed capability and looking for components

that satisfy it. From these components it selects the component that can satisfy the capability

first. In the case of multiple components it looks for the component that can satisfy it the longest.

Something to note is that the same capability can be satisfied by multiple components in through

life mode, allowing multiple different components to satisfy a capability throughout its lifespan.

The component that satisfies it for the longest is then scheduled. If the capability is not satisfied

for its entire lifespan, then the next component that can satisfy it for the next longest period of

time after the first component is selected and so on. Once the capability is satisfied or there are no

remaining components to schedule for it, the process moves on to the next earliest capability to be

scheduled and so on.

There is additional complexity in calculating when components can satisfy a capability. It is

not sufficient to simply check if there is sufficient budget to cover the component’s cost. The costs

of all of the component’s dependencies and when they can be scheduled needs to be considered

first. This is done by scheduling each of the component’s dependencies in order to a temporary

plan. When each of the component’s dependencies is added to this temporary plan, the resources

available to add the next dependency to the temporary plan are reduced. This leads to component’s

being scheduled later on when resources become available to acquire them. If the component is

selected to be scheduled then the temporary plan is added to the scheduling plan otherwise it is

deleted.

The scheduling of the solutions is performed just before the evaluation step in the genetic

algorithm. The scheduling is done here rather than trying to include scheduling information into

the genotype because using a genetic algorithm is typically a lot more computationally expensive

than simply using a dedicated algorithm for the same problem. A flowchart for the CATMOS

technique with the scheduling and through life parts of the technique added is given in figure 9.1.

For the through life extension to CATMOS, the evaluation step has been modified to take ac-

count of the scheduling information. The evaluation step evaluates how well a solution meets the

desired objectives. The evaluation needs to be modified to take account of how the available ca-

pability from a solution changes over time. Re-running the evaluation for each time a capability

starts or stops being required or a component enters or leaves service does this. When the evalua-

tion is run at a time it only considers components that are in-service to be part of the solution and

only evaluates with capabilities wanted at that time. Each of the capabilities’ satisfaction scores

are evaluated using their average satisfaction level during the time period they are desired.

As an example, if a capability is wanted for 10 days and it is satisfied for 5 days completely

and the other 5 days only half then the capability is evaluated as follows: (0.5 * 1.0) + (0.5 * 0.5)

= 75% satisfaction level.

When the CATMOS prototype tool was applied to a problem previously in chapters 7 or 8, it

111

St
ar

t
XT

ex
t D

SL
Ta

ke
 p

ro
bl

em
 d

es
cr

ip
tio

n
fro

m
 u

se
r

C
re

at
e

th
e

in
iti

al
 p

op
ul

at
io

n
us

in
g

a
ba

ck
tra

ck
in

g
pa

rs
er

C
ur

re
nt

 p
op

ul
at

io
n

m
em

be
rs

Br
ee

d
cu

rre
nt

po

pu
la

tio
n

m
em

be
rs

us

in
g

do
ub

le
 p

oi
nt

cr

os
so

ve
r

M
ut

at
e

ne
w

ly
 c

re
at

ed

po
pu

la
tio

n
m

em
be

rs
 a

t
lo

w
 p

ro
ba

bi
lit

y

M
ap

 p
op

ul
at

io
n

m
em

be
rs

 to
 g

oa
l

m
od

el
s

Ev
al

ua
te

 a
ll

po
pu

la
tio

n
m

em
be

rs
 v

ia
 th

e
go

al

m
od

el
s

an
d

ra
nk

 th
em

w
ith

 P
ar

et
o

fro
nt

 ra
nk

in
g

D
el

et
e

w
or

se
 h

al
f o

f t
he

po

pu
la

tio
n

m
em

be
rs

H
av

e
w

e
ru

n
fo

r t
he

w

an
te

d
nu

m
be

r o
f

ge
ne

ra
tio

ns
?

Pa
re

to
 F

ro
nt

 o
f

G
oa

l M
od

el
s

Pr
od

uc
ed

Pa

re
to

 F
ro

nt

C
AT

M
O

S
M

et
am

od
el

En
d

C
on

fo
rm

s
to

C
on

fo
rm

s
to

Ye
s

N
o

Pa
re

to
 F

ro
nt

 o
f

G
an

tt
C

ha
rts

Pa
re

to
 F

ro
nt

 o
f

C
ap

ab
ilit

y
O

ve
r T

im
e

gr
ap

hs

Pe
rfo

rm
 s

ch
ed

ul
in

g
on

 g
oa

l m
od

el
s

R
ep

ai
r p

op
ul

at
io

n
m

em
be

rs

Figure 9.1: Flowchart for the CATMOS technique with Through Life parts included

112

produced a Pareto front with corresponding goal models for each solution. When using the through

life extension it produces these charts and additionally produces for each solution a capability-

over-time chart of how the satisfaction of the capabilities vary over time and a Gantt chart of when

the acquisitions of the individual systems should be scheduled.

An example of these additional charts for a modified Multi-objective Next Release Problem

(MONRP) is shown in figure 9.2 and figure 9.3. The modifications made to the MONRP are to

introduce an acquisition time for each component, marking some of the dependencies between

components as sequential i.e. you cannot implement a requirement until another requirement

has been implemented and the inclusion of a scheduled budget rather than a single lump sum of

resources.

9.4 Through Life Extensions to the CATMOS Domain Specific Lan-
guage

To support the through life extension to CATMOS, the technique needs to take in extra information

about the acquisition scenario including information about when capabilities are desired, the tim-

ings of the budget for the acquisition project and the scheduling timings for the various acquirable

and existing components.

To include this information in the proof of concept tool support requires the definition of a

single ThroughLifePlanning block rather than a single FindTradeOffs block. The full underpinning

metamodel for the CATMOS technique is shown in figures 9.7 and 9.8 and this metamodel is

both used for generating the textual DSL interface, which will be described below and graphical

interface. In this section, we will discuss the through life extensions to the grammar and syntax.

The basic grammar and syntax is discussed in sections 7.4 and 7.9.

1 ThroughLifePlanning <scenarioName > {
2 popSize <searchPopulationCount > genCount <searchGenerationCount >
3 s t a r t D a t e <dateString > endDate <dateString >
4 (ExistingComponent <componentName > <quantity > (s t a r t D a t e <dateString >

endDate <dateString >)?)*
5 (AcquirableComponent <componentName > <quantity > a c q u i s i t i o n T i m e <

durationString > l i f e S p a n <timeString >)*

6 (DesireLow <costType >)*

7 (DesireHigh <costType >)*
8 (Budget <costType > {
9 amount <realNumber >

10 s t a r t D a t e <dateString >
11 (repeatDurat ion <durationString >

12 (endDate <dateString >)?)?
13 })*

14 }

Figure 9.4: ThroughLifePlanning Block Grammar

A ThroughLifePlanning block is similar to the FindTradeOff block discussed earlier in section

113

Figure 9.2: Through Life MONRP - Example Generated Capability Over Time Graph

114

Figure 9.3: Through Life MONRP - Example Generated Gantt Chart

115

7.4.1. The additional features are the usage of the startDate and endDate line. This defines the

time period for which the problem will be evaluated. No acquisitions can be scheduled before the

startDate. A <dateString> is a string formatted as “12/05/2014”.

ExistingComponents can optionally have a startDate when they came into service and an end-

Date when they will leave service. AcquirableComponents must have a acquisitionTime, which

describes how long it takes from starting to acquire the component until it comes into service and

a lifeSpan of how long the component stays in service for. A <durationString> can be a number

value such as “3” to represent 3 days. Alternatively it can be a value such as “5 months” to repre-

sent 5 months. The month strings are internally converted to days assuming 30 days to the month.

Lastly, the duration string can be ‘inf’ for an infinite duration.

Budget is a new feature in the through life extension and describes the resources available for

an acquisition. The <costType>matches up with the Costs defined on Components. A Component

cannot be acquired in through life mode if there is insufficient budget for it. Budgets have a real

numbered amount, a startDate and optionally a repeatDuration for if they are reoccurring and

optionally a endDate for if they stop reoccurring at some time.

1 (standAlone)?
2 (s e a r c h O b j e c t i v e)?
3 C a p a b i l i t y <capabilityName > {
4 (accumulat ion <measurementName >)?

5 (s t a r t D a t e <dateString > endDate <dateString)?
6 (Measurement <measurementName > {
7 (c r i t i c a l V a l u e <realNumber >
8 benchmarkValue <realNumber >)
9 |

10 (c r i t i c a l V a l u e s (<stringValue >(,<stringValue >)*)
11 benchmarkValues (<stringValue >(,<stringValue >)*))
12 (s c r i p t < s c r i p t >)?
13 }

14)*

15 (decomposes (<capabilityName >(,<capabilityName >*)))?
16 }

Figure 9.5: Capability Block Grammar - Through Life

Capabilities on the top level goal model have a very small modification of having a startDate

and endDate, which defines the time period during which the satisfaction of the capability will be

considered by the multi-objective search.

116

1 Component <componentName > {
2 (C a p a b i l i t y P r o v i s i o n <capabilityName > {

3 (reuse <reuseTimes >)?

4 (Measurement <measurementName > {
5 (providedValue <realNumber >)
6 | (providedValues (<stringValue >(,<stringValue >)*))
7 (s c r i p t < s c r i p t >)?
8 })*

9 })*

10
11 (Capabi l i tyUpgrade <upgradeName > {
12 targetComponent <targetComponentName >
13 (Capabi l i tyChange <changeType > {
14 C a p a b i l i t y P r o v i s i o n <changedCapabilityProvisionName > {

15 (reuse <reuseTimes >)?

16 (Measurement <measurementName > {
17 (providedValue <realNumber >)
18 | (providedValues (<stringValue >(,<stringValue >)*))
19 (s c r i p t < s c r i p t >)?
20 })*

21 })*

22 })*

23
24 (sequentialScheduling)?

25 (C a p a b i l i t y <capabilityName > {
26 (accumulat ion <measurementName >)?

27 (Measurement <measurementName > {
28 (c r i t i c a l V a l u e <realNumber >
29 benchmarkValue <realNumber >) |
30 (c r i t i c a l V a l u e s (<stringValue >(,<stringValue >)*)
31 benchmarkValues (<stringValue >(,<stringValue >)*))
32 (s c r i p t < s c r i p t >)?
33 })*

34 })*

35
36 (Cost <costType > <costAmount >
37 ({

38 (’startAfter’ <durationString >

39 (’repeatDuration’ <durationString >

40 (’stopAfter’ <durationString >)?)?)?

41 })?

42)*

43 }

Figure 9.6: Component Block Grammar - Through Life

Components have a few minor modifications in through life mode. The first is their capability

dependencies can be marked as sequential (line 24) as discussed previously. The second is that

costs can now have temporal information added. The startAfter allows the time of the cost to

be delayed. The repeatDuration allows the Cost to be made repeating to capture costs such as

117

Figure 9.7: CATMOS Full Meta-Model - Acquisition Settings

maintenance costs. The stopAfter designates when the repeating should stop (if ever).

This concludes the new notation for the through life extension to CATMOS and the grammars

and syntax shown here are the full grammars and syntax for the CATMOS technique.

118

Figure 9.8: CATMOS Full Meta-Model - Capabilities and Components

119

9.5 Military Acquisition Scenario - Case Study

In this section, we will apply the CATMOS technique with its through life extension to a military

acquisition scenario. The work shown here has already been published by the author in [1]. The

scenario is based on a scenario provided by MooD International; the scenario is realistic but not

actually real. The overall scenario objectives and the scope and complexity of the scenario are

realistic and the vast majority of the systems and their interactions are real. The semantic anno-

tations for the aggregations require detailed domain knowledge of the individual systems and are

therefore mostly fictitious. The main two purposes of this case study are show that CATMOS is

able to deal with the complexity of real acquisition problems and to demonstrate that CATMOS

can handle the through life part of the Through Life Capability Management (TLCM) problem.

9.5.1 Scenario

The military acquisition scenario revolves around stopping an enemy transporting supplies across

a river. There are three major objectives in the scenario. The first objective is clearing a route

to a forward base that will be established near the river. The second objective is establishing and

holding the forward base near the river. The third and final objective is preventing the enemy from

crossing the river.

Each of these objectives have being further decomposed into sub-objectives. Clearing the route

to the forward base is decomposed into having sufficient ground firepower to repel enemy forces,

having sufficient hard target removal to clear enemy bunkers and fortifications and having the abil-

ity to disable enemy road side mines. Holding the forward base decomposes into establishing the

forward base and keeping the forward base supplied with goods, water and fuel. Preventing enemy

river crossings decomposed into detecting enemy crossings and stopping enemy river crossings.

It’s not possible to stop an enemy river crossing that you failed to detect. The full goal-tree de-

composition is shown in figure 9.9.

The aim of the acquisition scenario is to perform a trade-off between satisfying the three ob-

jectives with the limited budget. There are also several concerns that need to be considered in the

acquisition scenario. Currently, due to political pressures, it is not possible to obtain approval for

the acquisition of more troops. In light of this, the head of the SAS training division has suggested

rolling out SAS training more widely to make better use of the existing troops. Another major

concern is that the contract for the maintenance of the L118 Light Guns is about to expire. To

keep the existing L118 Light Guns in-service or to acquire more L118 Light Guns will require

the contract to be renewed at considerable expense. Additionally, the manufacturer of the Mobile

Artillery Battlefield Radar system, which so far has had limited roll out, has filed for bankruptcy

meaning that the existing systems are unmaintainable. The systems could be replaced with an al-

ternative system current in-service in a friendly allied nation however this is an expensive option.

The UK MoD acquisition budget to be allocated to this acquisition scenario is £185 million being

made as four payments over a three-year time period. Any potential solutions to the acquisition

scenario need to deal with all of the above concerns simultaneously rather than trying to solve the

concerns one at a time.

This type of acquisition scenario can be considered to be a typical example of a system of sys-

120

Route Clearance

Holding Forward Base

Preventing Enemy
River Crossings

Ground Fire PowerHard Target Removal

Mine Clearance

Establishing
Forward Base Supplying

Forward Base

Supply Water Supply Fuel Supply Goods

Detect Enemy
Crossings

Stop Enemy
Crossings

Command and Control Surveillance Moving Targets

Figure 9.9: Military Acquisition Scenario Case Study Objectives

tem acquisition problem with a multitude of objectives, a large number of heterogeneous systems

and numerous constraints on the possible solutions.

The scenario already contains an existing system of systems being used to address the problem.

There are currently 14 systems making up the system of systems that are:

• Mastiff Vehicles. Mastiffs are 6 wheeled patrol vehicles that can carry up to 8 troops and

two crewmembers. They can be fitted with either a mounted heavy machine gun or grenade

launcher. [141]

• Vector Vehicles. Vectors are patrol vehicles that can carry up to 4 troops and two crewmem-

bers. They can be fitted with two mounted machine guns. [142]

• Troop Regiments. A troop regiment represents a large number of trained soldiers with basic

equipment and training.

• L118 Light Gun. The L118 Light Gun is an artillery piece that can fire a wide variety of

ammunition. It needs to be transported by another vehicle. [143]

• Land Rover 101 Forward Control Vehicles. The Land Rover 101 Forward Control Vehicle

is used by the UK MoD to tow the L118 Light Gun in position and to carry its ammunition

[144].

• Mobile Artillery Battlefield Radar System. The mobile artillery battlefield radar system is a

weapon fire location system. It is able to locate the source firing location of artillery fire,

rocket fire and mortar fire. [145]

121

• Buffalo Vehicles. The Buffalo is an armoured mine disposal vehicle. It is heavily armoured

and has a controllable arm for dealing with mines or improvised explosive devices. [146]

• Engineering Team. In the case study, the engineering team is considered to be the team

responsible for setting up the new forward command base along with their supplies.

• Oshkosh Wheeled Tanker Vehicles. The Oshkosh wheeled tanker is a militarised delivery

vehicle. It can be fitted to carry 20000 litres of fuel or 18000 litres of water. [147]

• Leyland DROPS Vehicles. The Leyland Demountable Rack Offload and Pickup System

(DROPS) is one of the main logistics vehicles for the UK MoD. The main use for the

vehicle is in carrying ammunition. [148]

• Global Hawk UAVs. The Global Hawk is an unmanned aerial vehicle (UAV) specialising in

intelligence, surveillance and reconnaissance (ISR) [149].

• Reacher Satellite Internet System. The Reacher Satellite Internet System is a transportable

system that provides Internet via satellite in remote locations. Typically, the Reacher is

mounted on a Duro 6x6 vehicle. [150]

• Mowag Duro III Vehicles. The Mowag Duro III vehicles are used for carrying the Reacher

Satellite Internet System [151].

• Bowman Radio Communication System. The Bowman is a digital radio communication

system [151].

9.5.2 Baseline Assessment

Normally, in MoD military acquisition before looking at any possible solutions, the first thing to

do is to look at the effect of acquiring nothing on a military scenario to decide whether any actions

need to be taken at all before looking at acquiring new systems to address a problem 1. For this

case study, we will therefore also perform a baseline assessment of the existing in-place systems

before looking at what we can acquire.

The ‘Holding the forward base’ objective is almost fully satisfied, at 89%. Looking at the

corresponding goal model, the reason the satisfaction is not 100% is that there are lower than

wanted levels of fuel and good being supplied to the forward base due to insufficient transport

vehicles. There is more than the wanted level of water being delivered. These figures are based on

the aggregations included within the goal model structure.

The ‘Route Clearance’ objective is being satisfied at 71% dropping to 69% when the ‘Mobile

Artillery Battlefield Radar’ goes out of service and then dropping to 63% when the ‘L118 Existing

Service Contract’ goes out of service. Insufficient ground forces and insufficient hard target re-

moval are currently limiting the Route Clearance objective. Due to political pressures more troops

cannot be acquired to make up for the limited ground forces. There are two options available for

consideration. The first option is to spread out more widely some of the SAS training (as sug-

gested by the head of the SAS training programme) to make better use of the troops already on the

1Private discussion at System Engineering 1 course, LSCITS Programme, 2012

122

Figure 9.10: Military Scenario - Baseline Capability Over Time

123

ground. The second option is the acquisition of more vehicles with inbuilt weaponry to give the

troops on the ground more firepower.

The ‘Prevent Enemy Crossings’ objectives are not being satisfied. Looking at the correspond-

ing goal model, the reason it is not being satisfied is that only 40% of enemy crossings can cur-

rently be stopped when there is a requirement to stop 70% of enemy crossings for the operation

to be considered successful. The limiting factor is not the lack of ability to stop enemy crossings

there is sufficient forces available to do that but lack of ability to detect enemy crossings. Cur-

rently, only 40% of enemy crossings can be detected hence no more than 40% of enemy crossings

can be stopped.

9.5.3 Acquirable Systems

As well as dealing with the acquisition problems listed at the start of the scenario, any potential

solutions also need to help address the capability short falls of the existing system of systems.

The following systems can be acquired to help addressing the problems in the scenario:

• Mastiff Vehicles.

• Vector Vehicles.

• L118 Light Guns.

• Land Rover 101 Forward Control Vehicles.

• Global Hawk UAVs.

• MQ-9 Reapers. The MQ-9 Reaper is an unmanned air vehicle (UAV) that has surveillance

abilities similar to the Global Hawk however additionally it has the ability to carry and

deploy offensive payloads in the form of Hellfire missiles [152].

• SAS Training Programme.

• Mobile Artillery Battlefield Radar Foreign. This system is a replacement for the Mobile Ar-

tillery Battlefield Radar system that has been developed independently in an allied country.

• L118 New Service Contracts. This is a new replacement contract for the maintenance of the

L118 Light Guns keeping them in service.

9.5.4 Military Acquisition Scenario - Textual DSL Input

The full textual DSL input for the case study is given in appendix B. The problem description

begins with defining the meta-heuristic search settings, the time period the problem is to be evalu-

ated over, the existing systems and acquirable systems that can be used in solutions and the budget

available whilst scheduling solutions. The existing systems and acquirable systems are annotated

with temporal information such as the date they came into service and date they will leave service

in the existing system case and the time taken to acquire them and the lifespan in the acquirable

system case. The problem description defines the goal tree structure for helping to evaluate any

potential solutions. A graphical overview of the goal-tree decomposition is shown in figure 9.9.

The problem description also defines details about the existing systems and the acquirable systems.

124

9.5.5 Runtime Information

The case study contains 25 types of different systems with multiple copies present for most of

them. The case study problem is of a realistic size and takes approximately 70 minutes to compute

on a MacBook Air Mid 2011 (Intel Core i5 1.7Ghz, 4GB 1333 MHz DDR3) with population size

200 and generation count 200. It is therefore unlikely that runtime will be a serious issue in most

envisaged uses of CATMOS. Currently, a capability investigation using a workshop based process

like TRAiDE [50] takes 6 months hence an extra 70 minutes spend on running the tool after the

problem has been input is insignificant. Using better computing equipment or multiple computers

would further reduce the runtime. The case study is based off a realistic military scenario provided

by a domain expert and therefore should be of a realistic size.

9.5.6 Results

When the CATMOS prototype tool is run on the problem a Pareto front consisting of one point

was found. In the solution the three objectives, route clearance, holding the forward base and

preventing enemy crossings, were satisfied at 91.3%, 89.5% and 43.2% respectively. The small

size of the Pareto front is to be expected because, unlike in the earlier Multi-objective Next Release

Problem case study, the cost is a merely a constraint rather than an objective. There is a budget

to help fulfil the objectives rather than we are trying to find the best option at each budget level

so the Pareto front generated is just competition between the satisfaction of the three objectives.

The reason why it is likely to have been reduced to a single result is because the three objectives

have a great deal of crossover in their needs and so are partially fulfilled by the acquisition of the

same components. Another run of the prototype tool found 2 results on the Pareto front but both

are slightly worse than the result shown here. Solely for comparison with the earlier MONRP case

study, a Pareto front with the three main objectives being summed together as one objective and

minimising the overall costs as the other objective is shown in figure 9.14 and this Pareto front has

21 points.

A corresponding capability over time graph, Gantt chart and goal model is generated for all

the solutions (in this case only one). The capability over time and Gantt chart are shown in figures

9.11 & 9.12. A simplified version of the goal model omitting the full details, due to size issues with

fitting the full goal model on a single page, is shown in figure 9.13. Most of the useful information

about the acquisition plan, such as when components are acquired and go out of service and how

this affects the amount of capability over time, can be gathered from the capability over time chart

and the Gantt chart.

For the simplified goal model, existing components with the same name and acquired compo-

nents with the same name have being merged together. The numbers at the end of the component’s

title indicate the individual systems that have being merged together i.e. SAS Training : 1, 3, 4

means there were 3 separate SAS training components that were acquired. The numbers simply

refer to the original labels of the copies of the component in the goal model and an E in front of a

number means the components were not acquired but existed at the beginning. Cost information

has also being omitted from the goal model. This has been done simply for presentational rea-

sons. The Gantt chart in figure 9.12 also uses the same numbering conventions for presentational

reasons.

125

Figure 9.11: Military Scenario - Scenario Capability Over Time

126

2
0
1
4

2
0
1
5

2
0
1
6

J
a
n

A
p
r

J
u
l

O
ct

J
a
n

A
p
r

J
u
l

O
ct

J
a
n

A
p
r

J
u
l

O
ct

M
as

ti
ff

F
le

et
E

1-
E

3

V
ec

to
r

F
le

et
E

1-
E

2

T
ro

op
R

eg
im

en
t

E
1-

E
5

L
11

8
L

ig
h
t

G
u
n

F
le

et
E

1-
E

5

M
o
b
il
e

A
rt

il
le

ry
B

at
tl

efi
el

d
R

ad
ar

E
1-

E
5

L
an

d
R

ov
er

1
01

F
C

F
le

et
E

1-
E

5

B
u
ff

al
o

F
le

et
E

1

E
n
g
in

ee
ri

n
g

T
ea

m
w

it
h

E
q
u
ip

m
en

t

O
sh

ko
sh

W
h
ee

le
d

T
a
n
ke

r
F

u
el

F
le

et
E

1-
E

2

O
sh

ko
sh

W
h
ee

le
d

T
an

ke
r

W
at

er
F

le
et

E
1-

E
3

L
ey

la
n
d

D
R

O
P

S
F

le
et

E
1-

E
4

R
ea

ch
er

F
le

et
E

1

B
ow

m
an

E
1

L
1
18

E
x
is

ti
n
g

S
er

v
ic

e
C

on
tr

ac
t

M
Q

-9
R

ea
p

er
1,

2,
4

M
Q

-9
R

ea
p

er
3

S
A

S
T

ra
in

in
g

1,
3,

4

M
ob

il
e

A
rt

il
le

ry
B

at
tl

efi
el

d
R

ad
a
r

F
or

ei
gn

1
,3

,5

M
ob

il
e

A
rt

il
le

ry
B

a
tt

le
fi
el

d
R

a
d
ar

F
or

ei
gn

2

M
ob

il
e

A
rt

il
le

ry
B

a
tt

le
fi
el

d
R

a
d
ar

F
or

ei
gn

4

Figure 9.12: Military Scenario - Scenario Gantt Chart

127

Figure 9.13: Military Scenario - Scenario Simplified Goal Model

128

Figure 9.14: Military Scenario - Pareto Front of Overall Capability vs. Overall Costs

129

9.5.7 Case Study Conclusions

The CATMOS technique can handle highly complicated system of system acquisition problems.

It is able to take a problem definition, system definitions, system dependency information and

budgetary constraints and generate a Pareto front of near optimal solutions for the decision makers

to choose from. Each answer has a corresponding capability over time graph, Gantt chart and goal

model that can be examined by the decision maker. The goal models allow the decision makers to

study the computer-generated solution and identify any possible problems in the solution.

Earlier work by Symes & Daw [50] on TRAiDE, described the concept of an Integrated Man-

agement Plan. An Integrated Management Plan is a Gantt chart of acquisition problems overlaid

by capability over time graphs. A major problem with the Integrated Management Plan was there

was no known working way to generate capability over time graphs, as there was no known ob-

jective method for mapping from the capabilities to DLoD or vice versa. The problems found in

TRAiDE motivated this research and this research has now addressed this problem by being able

to produce the wanted capability over time graphs.

The CATMOS technique has been shown on a realistic case study to be sophisticated enough

to handle realistic military acquisition problems. There were no issues in applying the CATMOS

technique itself to the case study problem. Though a couple of implementation specific bugs did

need to be fixed in the prototype tool such as reimplementing the capability accumulation feature

in a more computationally efficient manner.

130

Chapter 10

Implementation Details

10.1 Overview

In this chapter, we will cover some of the implementation specific details for the prototype tool

support for CATMOS, as some parts of it are novel in their own right. An architecture diagram

for the CATMOS prototype tool is shown in figure 10.1. The current prototype is split into a front

end and a back end. The front end contains the user interface, while the back end performs the

vast majority of the problem solving. The front end was split from the back end as a deliberate

engineering choice.

This split allows the user interface to be written in high-level languages for ease of implemen-

tation, whilst the back end can be written in low level programming languages for performance.

The performance is important as the technique uses meta-heuristic search that evaluates thousands

of candidate solutions; hence for the technique to be practical it needs good performance.

This also allows the front end graphical user interface to be easily upgraded or replaced if the

work was to be commercialised whilst keeping the same back end logic intact.

10.2 Front end

The front end is written using Epsilon platform languages [101] such as Epsilon Object Language

(EOL) [153], Flock [108] along with Xtext [133] and Java. The front end was written with these

languages because they allow the easy manipulation and display of models and the CATMOS

technique functions by creating goal models from model fragments. The tasks performed by the

front end are taking in the problem description, performing basic error checking on it, passing

it to the back end using a telnet-like protocol, retrieving the results from the back end once the

search has completed and displaying the results to the user. When searching for trade-offs without

considering the scheduling of the solutions, the results are a Pareto front, on which each point

is labelled with the number for a corresponding goal model, and a corresponding goal model for

each solution. When using the through life extension the results are the same plus additionally a

capability over time chart and Gantt chart for each goal model providing the temporal information

to the user. The prototype tool uses JFreeCharts [154] for generating its charts, though this could

be easily replaced with a different library.

131

Front End: Eclipse / Epsilon Platform: Backend: C++ Program:

Goal Model Metamodel

Textual User Interface (Xtext)

Epsilon Object Language Script:
Sending models to backend,
retrieving and formatting results

Graphical Userinterface
(EuGENiA/GMF)

2D Graphing Program
(JFreeCharts)

C++ Class Structure

TCP/IP Server

Genetic Algorithm (NSGA-II):

-custom initialisation function (SWI-Prolog)
-custom genotype
-custom phenotype (C++ Class Structure)
-custom genotype -> phenotype mapping
-custom evaluation function
-standard double point crossover breeding
-custom mutation
-custom repair step

Embedded Lua

Input:

Outputs:

corresponds to

communicates with

Figure 10.1: Prototype Tool Architecture Overview

In this thesis, MDE is not being used for general software development; instead we are ex-

ploiting the model manipulation abilities of the MDE techniques to allow us to manipulate the

structures of goal models to automatically find acquisition trade-offs. To use MDE techniques a

metamodel for the goal models we wish to manipulate must first be defined. The core metamodels

used for this are shown in figures 10.2 and 10.3 and were implemented using Emfatic [155], which

creates an Ecore metamodel [106].

The front end, which is built inside an Eclipse [105] workspace, currently has two user inter-

faces available. The first is the graphical user interface that was implemented semi-automatically

by using EuGENia [101] and Eclipse Graphical Modelling Framework (GMF) [132]. EuGENia

takes in an Ecore metamodel with some minor extra annotations and automatically generates a

GMF editor, which is a graphical user interface. While quick to generate, the editor is quite hard

to customise as it uses 4 different interlinked metamodels to specify the GUI layout and has little

update support for when the original metamodel changes.

The second is a textual user interface that was implemented semi-automatically by using Xtext

[133]. Xtext takes in an Ecore metamodel and automatically produces a corresponding working

textual syntax. The developer can then easily customise this textual syntax. Xtext automatically

provides an editor for the domain specific language including syntax highlighting.

These modelling tools were initially used because the core of the CATMOS technique relies on

combining model fragments together. In the first versions of the prototype tool, the combining was

implemented using modelling operations, such as model transformation. These tools were used

because of their ability to quickly define domain specific languages in a form that end users are

able to use. The modelling tools are still used in the display and presenting of the information to the

acquisition decision makers however the operational part is now written in C++ for performance

reasons.

Both user interfaces work with the same Ecore models and are hence interchangeable. At the

moment, the Xtext textual user interface is the default for creating a problem and the GMF editor

is the default for viewing the solutions.

132

Originally, most of the operational part of the prototype tool for the approach was also written

using model-to-model transformation languages such as Epsilon Transformation Language [107]

and Flock [108]. These were eventually phased out in place of a C++ back end that performs

the main work of the prototype tool. This was done because the languages provided by Epsilon

are interpreted rather than compiled and coupled with the use of meta-heuristic search this causes

performance issues. The CATMOS prototype tool still uses Epsilon Object Language [153] for

performing tasks such as checking the model and loading the model into the C++ back end and

loading the results back from the C++ back end into the model format to allowing the results to

be viewed via the graphical user interface.

Flock [108] is still used for helping in the formatting and displaying of the resulting models

received from the back end. Flock is not a general-purpose model-to-model transformation lan-

guage like ETL but instead is designed for the situation where metamodels are upgraded [108].

When a metamodel is upgraded, old models that used to confirm to the metamodel may no longer

conform to the metamodel and be invalid [108]. Flock is a tool for migrating these now invalid

models to the new metamodel [108]. From the author’s own experience Flock is a lot quicker and

far more concise to use than ETL for specifying simple transformations between similar metamod-

els as it assumes information is copied directly between all non changed parts of the metamodels

between the source and target metamodel. Through it should be noted that Flock doesn’t contain

the same type of expressive power as ETL. Since most of the transformations currently used are

for preparing the model information for display purposes and therefore move information between

very similar metamodels, these transformations are written using Flock.

Another tool that was considered for visualising the goal models was Graphiti [156], which

could have provided a GUI editor similar to EuGENia however at the time of use the tool was

insufficiently mature to be of practical use.

10.3 Back end

The back end is responsible for combining the Goal Tree and Components together to produce

Goal Models and performing the multi-objective search over the possible Goal Model structures

and dealing with any through life constraints and scheduling of the solution if applicable. The back

end listens on a TCP/IP port for connections and uses a simple telnet like protocol for accepting

the problem specification generated by the front end. Once, the multi-objective search is finished

the back end hands back the solutions on the Pareto front to the front end.

10.3.1 Back end Performance

The back end is written in C++ for performance reasons. Originally, the work performed by the

back end was performed by the now current front end using languages from the Epsilon plat-

form [101]; however, these languages are interpreted, and hence rather slow with some searches

taking multiple days to complete. When the logic was rewritten in C++, an approximately 300x

performance increase was obtained.

133

Figure 10.2: CATMOS Technique Full Meta-Model - Acquisition Settings (Repeated)

10.3.2 Metamodel in C++

The front end and the back end both use the same underlying metamodel. In the front end the

metamodel is implemented using EMF [106] and in the back end the metamodel is implemented

using an object oriented programming class structure.

10.3.3 NSGA-II

The prototype tool only partially implements the NSGA-II algorithm [119]. NSGA-II contains a

crowding distance to spread out solutions over the Pareto front. Usually, NSGA-II is run on prob-

lems with continuous solutions spaces where there can an infinite number of different solutions

close together on the Pareto front. In this work, where there are discrete components making up

the solutions, the points on the Pareto front are not continuous hence the full crowding distance

algorithm is not needed. Instead, a penalty is added for penalising exactly identical solutions on

the Pareto front, which causes the solutions to spread out along the Pareto front, as the space is not

continuous.

10.3.4 Scheduler

The prototype tool back end contains a scheduler for dealing with through life problems. Schedul-

ing is performed after the genotype is converted to the phenotype and the evaluation is run multiple

times at different times to get the changes in capability over time as components come into and go

134

Figure 10.3: CATMOS Technique Full Meta-Model - Capabilities and Components (Repeated)

135

Function Description
getCapability (string capabilityName) Returns the satisfaction value of the capability.

getMeasure (string measurement-
Name)

Returns the provided value or provided values for a
measurement within in the same component as the
caller.

getGlobalMeasure (string measure-
mentName)

Returns the provided value or provided values for a
measurement anywhere in the goal model.

getScenarioMeasure (string measure-
mentName)

Returns the provided value or provided values for a
measurement in the goal tree.

getAllMeasures (string measurement-
Name)

Returns as a table with an entry for each measure-
ment matching the name the provided value or pro-
vided values.

countComponent (string component-
Name)

Returns the number of that component included in
the current solution.

canUseCapability (string capability-
Name)

Returns if the capabilities dependencies are all met.

Table 10.1: Functions made available by the prototype tool to Lua

out of service. The scheduler’s algorithm is defined in chapter 9.

10.3.5 Scripting

The technique requires the use of a scripting language to allow formulas to be specified on the goal

model. Lua [128, 129] as described in section 7.2.2 was chosen for this purpose but almost any

programming language would be suitable for this task. Lua allows the application it is embedded

into to provide function hooks that allow the application and Lua to communicate with each other

[128, 129]. In this case, the scripts placed on the goal model are able to access other parts of the

goal model during their execution. Functions are provided by CATMOS to the Lua scripts to allow

them to interact with the goal model. These functions along with descriptions of them are listed in

table 10.1.

A Lua script can be added to any Measurement and then any time the Measurement is evaluated

the Lua script is executed. The Lua script can change the providedValue or providedValues field

of the Measurement it is attached to by setting the value ‘output’ to a value or a table of values.

For convenience and to avoid the unnecessary character escaping of Lua functions written

directly in the textual DSL, the Lua functions can also be defined in a separate script file alongside

the textual DSL and be loaded automatically by the prototype tool.

136

10.4 NSGA-II Genetic Algorithm - Implementation Details

This section extends the explanation given in section 8.2 of the customisation of the NSGA-II

algorithm for the CATMOS technique, with implementation details for the custom population

initialisation and the phenotype evaluation algorithms.

10.4.1 Custom Population Initialisation

The CATMOS technique uses a back tracking parser to create its initial solutions. Rather than

implementing a backtracking parser from scratch, the problem of creating genotypes that give

complete Goal Models has been formulated using SWI-Prolog [157]. The Goal Tree and Compo-

nent models used as the tool’s input are transformed into production rules for the parser and the

parser’s output is converted into the genotype for use with the multi-objective search algorithm.

The population initialisation algorithm was implemented using Prolog because the problem can

be easily specified as Prolog production rules and Prolog automatically provides the backtracking

capabilities required by the algorithm.

The Prolog code for this is presented below. The problem specific part of the Prolog code is

the desired capabilities, the decomposition list, the component list, the capability provision list and

the capability requirement list. The problem specific part is generated automatically for the current

problem where the rest of the Prolog code is static and used between problems. The Prolog code

works by starting with the leaf goals in the goal model and then deriving satisfying components

using the providesCapability relationship. Thereafter it derives through the requiresCapability

links into more components until the tree is fully derived. As it derives through the tree the

connections that are required for the tree derivation that is being made are stored in an accumulator

and the path chosen through the tree is randomised using the random member function. The first

time a component upgrade is used to provide a capability, the usage of the upgrade is asserted into

the upgrade relationship.

10.4.2 Custom Population Initialisation - Prolog Code

1 %Desired Capabilities

2 desiredCapabilities([’Capability1’]).

3 %Decomposition List

4 capabilityDecomposes(’Capability1’,’Capability2’).

5 %Component List

6 component(’Component1’).

7 component(’Component2’).

8 %Capability Provisions List

9 providesCapability(’Component1’,[’Capability1’],’blank’).

10 providesCapability(’Component2’,[’Capability2’],’blank’).

11 %Capability Requirements List

12 requiresCapability(’Component1’,[’Capability2’]).

13 %Static Functions

14 member(X,[X|_]).

15 member(X,[_|T]) :- member(X,T).

16 canProvideCap(Comp,Cap,Acc) :- f i n d a l l (C,canProvideCapNormal(C,Cap,_),R),
random_member(Comp,R), f i n d a l l (Upgrade,canProvideCapNormal(Comp,Cap,

137

Upgrade),Upgrades),random_member(Upgrade,Upgrades),createUpgrade(

Upgrade,Acc).

17 canProvideCapNormal(Comp,Cap,Upgrade) :- providesCapability(Comp,List,

Upgrade), member(Cap,List).

18 createUpgrade(’blank’,[]).

19 createUpgrade([H,H2|_],Acc) :- a s s e r t (H), canSatComp(H2,Acc).
20 canSatCap(Cap,Acc) :- canSatCap(Cap,Acc,scenario).

21 canSatCap(Cap,Acc,scenario) :- capabilityDecomposes(Cap,DCaps), canSatCaps(

DCaps,Acc,scenario).

22 canSatCap(Cap,[(DComp,Cap,Comp),AccH|AccT],DComp) :- canProvideCap(Comp,Cap

,AccH), canSatComp(Comp,AccT).

23 canSatComp(Comp,AccT) :- requiresCapability(Comp,Caps), canSatCaps(Caps,

AccT,Comp).

24 canSatCaps([],[],_).

25 canSatCaps([Cap|T],[AccH|AccT],Comp) :- canSatCap(Cap,AccH,Comp),

canSatCaps(T,AccT,Comp).

26 canMeetScenario(Acc) :- abolish(upgrade/3), dynamic(upgrade/3),

desiredCapabilities(X), canSatCaps(X,Acc,scenario).

27 getUpgrades(R) :- f i n d a l l ((A,B,C),upgrade(A,B,C),R).
28 getSolution :- canMeetScenario(X), open(’output.txt’,write ,Stream),w r i t e (

Stream,X),nl (Stream),getUpgrades(Y),w r i t e (Stream,Y), c l o s e (Stream),halt.

The top of the Prolog Code (lines 1-12) is used for specifying the problem. The desired

capabilities from the top-level goal model are specified on line 2 as a list. Their decompositions

into sub-capabilities are specified using the capabilityDecomposes relationship (line 4), with the

first argument being the capability name and second argument being the sub-capabilities name.

The line is repeated for each decomposition. All available components are stated in the component

relationship shown on lines 6 & 7. The capabilities provided by a component are stated using the

providesCapability relationship (lines 9 & 10). The first argument is the component’s name, the

second its capability provisions and the third is the upgrade, if any, that is used to provide the

component with those capability provisions. The capability dependencies are stated using the

requiresCapability relationship, the first argument being the component’s name and the second

argument being a list of needed capabilities.

The bottom half of the Prolog code (lines 13 and down) is used for specifying the Prolog

production rules that encodes the custom initialisation algorithm. Lines 14 & 15 just encode the

membership test, which is whether a given term is located inside a list of terms or not. The

Prolog production rules begin executing on line 28, with the getSolution production rule. This

rule formats the output of the Prolog run into a form that can be changed later on into a genotype.

This formatting rule calls the main production rule on line 26, that query whether all the desired

capabilities can be met. This calls the canSatCaps production rules (lines 24-25), that sets up a

Prolog accumulator that attempts to see if each desired capability can be satisfied by calling the

canSatCap production rules for each of the desired capabilities. The canSatCap production rules

(lines 20-22) query whether a given capability can be satisfied. The line 21 of the canSatCap

production rules converts a query for if a capability in the top-level goal model can be satisfied

into a new query for if all of the capabilities sub-capabilities can be satisfied instead. The line 22

of the canSatCap production rules changes a query for whether a capability can be satisfied into

a new query asking whether there is a component that provides the capability and whether this

138

component’s capability dependencies can be satisfied.

Whether there is a component that can provide the capability is addressed by the canProvide-

Cap and canProvideCapNormal production rules that find all of the satisfying components for a

capability and choose one of these components at random. If an upgrade is used to satisfy this

capability, then this upgrade is added to a list and whether the component providing the upgrade

can be satisfied is then queried. The production rule canSatComp on line 23 handles whether a

component can be satisfied by creating a new query on whether all of the capability dependencies

can be satisfied.

10.4.3 Phenotype Evaluation Algorithm

As described in section 8.2 the phenotype needs to be evaluated by the search technique.

Firstly, during evaluation all Components and Capabilities have a status value that can be

between 0 & 2. The meaning of the various values is given below:

Status Value Meaning

0 Not satisfied

0-1 Partially satisfied but a dependency not met

1-2 Partially satisfied

2 Fully satisfied

The evaluation algorithm used to evaluate the phenotype is as follows.

1: for all Capabilities do
2: Set capability status value to 0.

3: end for
4: for all Components do
5: Set component status value to 0.

6: end for
7: for all Components do
8: if Component has no dependencies then
9: Set the component’s status to 2

10: end if
11: end for

The first part of the algorithm sets all status values to their starting positions. Initially, all

status values are zero except where these is a component that has no dependencies and hence

is fully satisfied. The algorithm in the next part will propagate the status values up the goal

tree where applicable from the components with no dependencies until the status values reach

the top of the goal tree.

12: while Changes are still being made do
13: for all CapabilityProvisions do
14: if CapabilityProvision is attached to Component with a status value greater than 1

then
15: Copy the CapabilityProvision’s Measurement’s providedValues to all attached sat-

isfying Capabilities’ Measurement’s providedValues.

139

16: end if
17: end for
18: for all Capabilities do
19: for all of the Capabilities’ Measurements do
20: Evaluate any attached Lua script.

The second part of the algorithm starts a while loop that keeps repeating until there are

no further changes that can be made to the goal tree. All of the component provisions that

are attached to a satisfied component have their measurements copied up into the capabilities

they satisfy. Then these capabilities satisfactions are then evaluated. This involves checking

the satisfaction level of each of the capabilities measurements and calling any attached Lua

scripts.

21: Calculate the Measurement’s satisfaction value as follows.

22: (Note that whether the benchmarkValue is higher or lower than the criticalValue

decides whether the providedValue is desired to be high or low.)

23: if benchmarkValue ≥ criticalValue then
24: if providedValue < criticalValue then

Measurement satisfaction status = 0.

25: end if
26: if providedValue ≥ criticalValue then
27: Measurement satisfaction = (providedValue - criticalValue) / (benchmark-

Value - criticalValue)

28: end if
29: end if
30: if benchmarkValue ≤ criticalValue then
31: if providedValue > criticalValue then
32: Measurement satisfaction status = 0.

33: end if
34: if providedValue ≤ criticalValue then
35: Measurement satisfaction status = 1.0 - (providedValue - benchmarkValue)

/ (criticalValue - benchmarkValue)

36: end if
37: end if
38: end for
39: Evaluate the satisfaction level of the Capability, which is the average satisfaction level

of all of its Measurements.

40: if All the measurement’s satisfactions are above 0 then
41: Add one to the capability’s satisfaction status.

42: end if
43: end for

Once the capabilities satisfaction have been evaluated, the components are then all re-

evaluated to see if their capability dependencies are now satisfied and if so they become sat-

isfied as well. The algorithm continues to loop until it goes through the goal tree once and

140

finds there was no change to make. Once this happens the loop stops and the capability status

values for the search objective capabilities are send to the multi-objective search algorithm.

44: for all Components do
45: if All capability dependencies are fully satisfied then

Set the component’s satisfaction status to 2.

46: end if
47: if All capability dependencies are partially satisfied then

Set the component’s satisfaction status to 1 + (number of fully satisfied capability depen-

dencies / number of all capability dependencies).

48: end if
49: if Some capability dependencies are not satisfied then

Set the component’s satisfaction status to (number of fully satisfied capability dependen-

cies / number of all capability dependencies

50: end if
51: end for
52: end while
53: Read out the status values for the search objective capabilities and pass them to back to the

multi-objective search algorithm.

10.5 Metamodel Explanation

To use MDE, a metamodel must be defined for all modelling languages that are to be processed.

The goal model metamodel is defined in figures 10.2 & 10.3. Using the information provided by

the metamodel, EuGENia [131] and GMF [132] are able to generate a graphical user interface for

the prototype tool and Xtext [133] is able to generate a textual interface for the prototype tool.

Following on from the conceptual explanation of the technique in chapters 7, 8 & 9, a technical

explanation of the metamodel is provided here:

10.5.1 Run Configuration

The RunConfiguration contains the name of the problem being run and the population size and

generation count to use for the search’s generic algorithm. This class is normally never created but

instead either FindTradeOffs or ThroughLifePlanning is created instead. The CATMOS technique

currently runs in one of two modes. The first mode described in chapter 8 is the find trade-off mode

that trade-offs between achieved capability and incurred costs and the second mode described in

chapter 9 is the through life mode that schedules an acquisition over time with budgetary con-

straints.

10.5.2 Find Trade-offs

Creating a FindTradeOffs object sets the prototype tool’s mode to “Find Trade-offs”. In this mode

the tool finds the Pareto front of the trade-offs between the Capabilities set to be search objectives

141

and the costs, which are either set to be desired high with DesireHigh or set to be desired low with

DesireLow.

10.5.3 Through Life Planning

Creating a ThroughLifePlanning object sets the prototype tool’s mode to “Through Life Planning”.

In this mode the tool attempts to schedule the acquisition of Components to maximise the amount

of capability produced through life whilst keeping within the budget constraints specified by the

Budget class.

10.5.4 ComponentU

The ComponentU class is the basic class for saying what is to be used within the prototype tool’s

run. The name field is the name of the Component to be included in the run and the quantity field

is how many times it should be included in the run. This class is not normally created but instead

an ExistingComponent or AcquirableComponent, which inherit from this class is created instead.

10.5.5 Existing Component

The ExistingComponent class is for specifying components that already exist. These components

can optionally have a start date of when they were acquired and optionally an end date of when

they go out of service, which are used in through life planning mode.

10.5.6 Acquirable Component

The AcquirableComponent class is for specifying components that can be acquired during the

tools run. They can optionally have a time taken to acquire them and a life span of how long after

acquired they last for, which are used for scheduling them in through life planning mode.

10.5.7 Desire Low

The DesireLow class is for specifying that a cost is desired to be as low as possible. Desire Low

and Desire High are separately defined classes because they affect all Costs of their cost type.

10.5.8 Desire High

The DesireHigh class is for specifying that a cost is desired to be as high as possible.

10.5.9 Budget

The Budget class is used in through life planning mode. It specifies when and how much of a type

of cost becomes available. The name field should match a name field used in a Cost object defined

elsewhere in the model. The amount, start date, repeat duration and end date are the same as in

the Cost class apart from these are resources being provided as oppose to being taken away.

142

10.5.10 Capability

A Capability represents a need or a provision of some ability of interest. Capability can be used

in three contexts. The first context is as a need specified in the Scenario. In this case the Capa-

bility has a name, can be marked as a search objective, can be marked as not requiring fulfilment

(standAlone), can be given a start date and an end date of when the capability is needed and has

a status of how well it is being fulfilled in a solution with associated colour (Green, Yellow or

Red). The accumulation measurement relationship can also be used in this context. This relation-

ship specifics that the capability is an accumulation using the target measurement. This is best

explained by example. Consider a Fire Fighting Capability that requires a certain gallons of water

to be sprayed on a fire. By making the capability an accumulation multiple different Components

for example multiple fire trucks can contribute to putting out the fire and the values they provide

for the accumulation measurement are added together for determining how well the Capability is

satisfied. The second context is as a need of a Component in this case, the Capability cannot be

marked as a search objective or having a start date and end date but it can be marked as requir-

ing sequential scheduling. Sequential scheduling says that the Capability must be fulfilled before

work can start on acquiring the Component it belongs to. The third context is as a provision of

a Component. In this case, the Capability has a name and can be marked as only being usable a

certain number of times in the goal model by setting a value in the reuse field.

The CATMOS technique generates different solutions by joining CapabilityProvisions and

Capabilities differently (through the satisfies relationship) to attach different goal model fragments

together forming different solutions.

Once a Capability satisfies another Capability, all the values for Measurements on the first

Capability are filled in on the second Capability, allowing the Capabilities satisfaction to be es-

tablished.

The script field is used for including measurement annotations. In the current prototype ver-

sion, Lua [128,129] is used for this purpose. The script is given access to the entire goal model and

is able to set an output variable. The output variable overrides the value of the provided value field.

This allows the representation of non-trivial relationships in the goal model such as those defined

by physics formulas. This both allows global properties across the goal model to be evaluated and

for higher level Capabilities to take their value from a combination of lower level Capabilities.

10.5.11 Component

A Component represents a resource within the Defence Lines of Development, e.g. A piece of

equipment, a training programme, an organisational structure, etc. Each Component has a name,

can provide capabilities, can require other capabilities and can costs. The start date and end date

fields can be used to define when a Component comes into service and goes out of service. A

Component can also upgrade other Components through the CapabilityUpgrade class.

10.5.12 Cost

A Cost represents a cost for a Component. Each Cost has a name that defines the type of cost; for

example, person-hours can be defined alongside monetary cost. The last three fields are for use for

143

specifying costs over time. The startAfter field can be used to say that a cost is not incurred when

the Component is acquired but some time before or after it. The repeatDuration field can be used

to represent repeating costs such as maintenance costs that repeat every so often. The stopAfter

field can be used to specific when a repeating cost stops. For simple one-off costs the last three

fields are just set to 0.

10.5.13 Measurement

A Measurement can be attached to a Capability being used in the context of a provision or a need.

In the case of a provision, the Measurement has a name and a single quantitative provided value

(providedValue) or a multitude of qualitative values attached as QualitativeValues. In the case

of a need, the Measurement has a name, critical values that are required for the Capability to be

satisfied at all and benchmark values for the Capability to be completed satisfied. These can be

quantitative or qualitative like before. The script field can contain a Lua [128, 129] script that can

override the providedValue field.

10.5.14 QualitativeValue

A QualitativeValue simply holds a single string value.

10.5.15 CapabilityUpgrade

A CapabilityUpgrade is used for cases where one Component changes the Capabilities of another

Component. The name field is the name of the upgrade. The target component field is the name

of the Component that is affected by the upgrade. The CapabilityUpgrade attaches once the goal

model is formed to the Component it upgrades (if any) via the upgrading link. The exact changes

are specified in the CapabilityChange class. The three supported operations are adding a new

capability, modifying an existing capability or deleting an existing capability. The name field of

a CapabilityChange class can be “add”, “mod” or “del” and the class is attached to a Capability

class for specifying the exact changes to make in the “add” or “mod” case. In the “del” case only

the Capabilities’ name is used.

10.5.16 QualitativeValueDictionary

A QualitativeValueDictionary is used to indicate that certain QualitativeValues are greater or lesser

in value than other QualitativeValues. For example “Stormy Weather Conditions” may have a

higher value than “Calm Weather”. Capability Provisions automatically provide every value that

is less than them to the Capability that they are satisfying.

10.5.17 Summary

In this chapter, we covered the implementation specific details for the current prototype tool. We

covered the overall architecture of the tool and some of the concrete details used in implement-

ing the technique described in the previous three chapters. In the next chapter, we evaluate and

conclude the work in the thesis then discuss possible avenues for future work.

144

Chapter 11

Evaluation & Conclusions

The research presented in chapters 7, 8, 9 & 10 will be evaluated in this chapter. The research

addresses the three individual research gaps using a new technique called CATMOS.

The ideal way to evaluate the CATMOS technique would be to apply the technique to an ac-

tual acquisition of a system of systems. It is infeasible to do this in an EngD because acquiring

a system of systems is likely to take millions of pounds and multiple years to complete and the

acquisition could extend into decades. Also it would be difficult to determine the impact of the

CATMOS technique applied to such a problem. Wicked problems (section 3.3), which large-scale

system acquisitions are one of, by their nature are unique [39]. Therefore it is not possible to have

a ‘control’ large-scale system acquisition without the application of CATMOS technique alongside

the large-scale system acquisition with the application of the CATMOS technique. This makes it

difficult to see the effect of using the CATMOS technique. Due to these factors, an experimen-

tal evaluation of the technique isn’t feasible, so another method for evaluating the technique is

required.

Instead, the research has been evaluated on the two case studies (in sections 8.3 and 9.5) but to

tie the evaluation together we present a summative argument here about the validity of the research

based on the existing literature, how the technique extends and builds upon the existing literature

and the testing of different parts of the research on the case studies.

11.1 Summative Evaluation Argument

In section 1.1.3, it was established that capability based acquisition and goal modelling contain

equivalent concepts with capabilities mapping to goals and components mapping to system, people

and processes. Goal modelling itself is a well-established technique within the field of early

requirement engineering and has been evaluated on a wide variety of case studies and real life

projects (20+ real life projects) [158].

The research presented for addressing the first research gap is an extension to existing goal

modelling techniques. More specifically, it is the modularisation of goal models into parts, namely

the Goal Tree and the individual Components by adding a layer of abstraction of CapabilityPro-

visions and a layer of abstraction of Capability dependencies to the Components (Agents). This

additional layer of abstraction means that instead of an Agent directly satisfying a Goal, a Com-

ponent (Agent) has a CapabilityProvision that satisfies a Capability (Goal).

145

Component

Capability
Provision A

Measurements

Capability
Dependency B

Agent

Goal A

Goal B

AND Goal

Measurements

AND

Maps To

Agent is
Present

Figure 11.1: Example: Mapping CATMOS Goal Models to Normal Goal Models

When the technique forms a Completed goal model from the Goal Tree and the Components,

that Completed goal model can be mapped directly to a normal AND/OR tree goal model. This

means that the Completed goal models provided by the CATMOS technique are equivalent to

goal models meaning the results are as valid as in normal goal modelling. The mapping between

Completed goal models and normal AND/OR tree goal models is trivial.

The mapping is shown in figure 11.1. A Component can be converted to an Agent by creating a

corresponding Agent with a new attached goal of the Agent is present. This attached goal Agent is

present needs to be a sub goal of a new AND Goal that has as sub goals each of the Component’s

dependencies. The AND Goal needs to be a single sub goal of all of the CapabilityProvisions

rewritten as Goals.

Essentially, the work on research gap 1 restructured goal modelling into a format more suit-

able for performing trade-off analysis. For meeting research gap 1, goal modelling is an objective

method for establishing a relationship between the capabilities and the Defence Lines of Develop-

ment (DLoD). However, it also needs to be shown that the method can handle multiple different

possible solutions for going between the capabilities and the DLoD to enable it to support trade-

offs. This was done by adding modularisation to goals models by splitting the top-level goal tree

and the Components apart from each other. This is demonstrated by the Tea Making example

shown in chapter 7, the Multi-Objective Next Release Problem case study shown in chapter 8 and

the realistic military scenario case study shown in chapter 9.

The second identified research gap is dealing with the multi-objective nature of the problem.

This was addressed in chapter 8 using multi-objective search. The multi-objective search takes

advantage of the modularisation of goal models done in research gap 1 to find ‘optimal’ ways to

146

construct the goal models from parts. The technique can then produce a Pareto front along with

Completed goal models for each point on the Pareto front. The Pareto front allows the acquisition

decision makers to see the trade-offs that can be made and the corresponding Completed goal

models allow the acquisition decision makers to see what they need to acquire and how to use

what they acquire together to obtain the wanted trade-offs.

The ability of the technique to handle the trade-offs between competing goals and costs as

required by research gap 2 has been demonstrated on the Multi-Objective Next Release Problem

(MONRP) in section 8.3. The MONRP, though a simpler acquisition problem than Through Life

Capability Management, is a suitable candidate for dealing with the trade-off portions of the CAT-

MOS tool. The work on applying the CATMOS technique to the MONRP has been published

in [3] and has passed peer review. The question remains whether or not the CATMOS technique

is sufficiently feature rich to deal with the Through Life Capability Management problem since

it is a more complicated problem than the MONRP. The CATMOS technique was shown to be

sufficiently feature rich by the realistic military acquisition scenario case study in section 9.5.

All solutions created using the CATMOS technique can be directly validated and verified by

the decision makers. The decision makers create the initial problem as a goal tree and a set

of component definitions, and the technique automatically joins them together to produce valid

solutions. Though the decision makers are unable to follow how the technique automatically

joins together the parts to produce the solutions, the decision makers can visualise the resulting

completed solutions, which contain the goal tree defined by the decision makers, some of the

component definitions defined by the decision makers and the joins between them created by the

technique. The visualisation of the completed solutions allows the decision makers to manually

establish whether or not the solution is valid with respect to their problem.

The third identified research gap is dealing with the through life nature of the problem. This

was addressed in chapter 9 by adding additional through life annotations to the technique, adding a

scheduling step in the genetic algorithm that schedules solutions before they are evaluated, modi-

fying the evaluation to deal with the satisfaction of capabilities over time and producing both Gantt

charts and capability over time charts for the acquisition plans. To show that the technique can

handle the through life nature of the problem as defined in section 6.3 the technique was applied

to a realistic military acquisition scenario in section 9.5 and also published in [1].

The original motivation for this research project came from issues found in TRAiDE [16]. A

major motivating issue was from Andrew Daw’s integrated management plan [16] that combines

together a Gantt chart for an acquisition with capability over time graphs showing how the capa-

bility varies as the various acquisition projects come into and leave service. The problem with the

integrated management plan was that there was no logic for generating the capability over time

graphs from the scheduled acquisition programmes (categorised by the DLoD) on the Gantt chart.

As an engineering achievement rather than a research achievement, the CATMOS technique can

now provide this logic meaning that a major initial motivating problem for the research project has

been addressed.

147

Problem Size Run 1 Run 2 Run 3 Mean
1 customer 5 requirements 32s 29s 25s 29s
10 customers 50 requirements 135s 137s 143s 138s
20 customers 100 requirements 378s 401s 403s 394s
30 customers 150 requirements 737s 719s 772s 743s
40 customers 200 requirements 1389s 1349s 1185s 1308s
50 customers 250 requirements 1879s 1948s 2393s 2073s
60 customers 300 requirements 2721s 3778s 2313s 2937s
70 customers 350 requirements 3229s 3233s 2998s 3153s
80 customers 400 requirements 4385s 4587s 4184s 4385s

Table 11.1: Timing Results For The MONRP Problem in the CATMOS prototype tool

11.2 CATMOS Technique - Efficiency

A consideration in evaluating the CATMOS technique is the algorithm complexity; this will give

some indication of the scalability and performance of the technique. The complexity results will

be presented at the start of section 11.2.2. The Multi-objective Next Release Problem (MONRP)

shown in section 8.3 is a suitable test problem to see if the technique can scale up. Some instances

shown in the literature of the MONRP such as by Zhang et al [130] use up to 100 customers and

200 requirements. We are therefore going to assess the algorithm complexity for the technique.

11.2.1 Experimental Setup

All the tests will be run on the same hardware, which is a MacBook Air Mid-2011 (Intel Core i5

1.7Ghz, 4GB 1333 MHz DDR3). While this is certainly not the fastest computer available and

the tests would run much faster on a modern up-to-date desktop computer the MacBook Air has a

well-known hardware configuration and this means the tests can be repeated on the same hardware

by a third party.

The population size and generation count of the NSGA-II algorithm greatly effects the overall

runtime of the algorithm. We are therefore going to use the same settings as existing work on the

MONRP by Zhang et al [130] who uses population size 200 and generation count 50.

Working out the time complexity of the CATMOS technique requires running CATMOS on

multiple different problem sizes. The MONRP problem is suitable for this since it can be run

at multiple different problem sizes easily using randomly generated data. The timing taken for

the CATMOS technique to finish its run with 1 computing core will be measured between 10 to

80 customers, at interval 10, with 5 requirements added for every customer present in the run

and random dependencies (acyclical) generated between software features. Since the CATMOS

prototype tool will not start with no customer requirements loaded into it, a timing measurement

will also be taken at 1 customer with 5 requirements to approximate the 0 timing measurement.

The timing results are shown in table 11.1.

11.2.2 Algorithm Complexity Analysis

The problem size against average time taken has been graphed in figure 11.2.1. From equation

fitting the CATMOS technique is O(n2) where n is the problem size. Obviously, increasing the

148

Figure 11.2: MONRP - Problem Size Against Time Taken

population size and generation count will affect the time taken but this is mostly predicable, dou-

bling the population size will take no more than double the time and similarly with the generation

count by simple inspection of the genetic algorithm used.

11.2.3 Parallelisation Discussion

One method for dealing with very large problems is parallelisation. The CATMOS prototype

tool implements some basic parallelisation. The tool is split into both a GUI and backend logic

server. The backend logic server can be run on multiple computing cores on either the same

computer or on different computers connected by a network. When the prototype tool is run on

multiple cores, one core is given the job of manager that handles the genetic algorithm and the

other cores are used for evaluating solutions. The MacBook Air only has 2 cores so isn’t suitable

for testing parallelisation therefore a computer with Intel Core i7 3770K (3.5GHz with 4 cores

and hyper-threading) and 8 GB of RAM has been used. The normal run on the MONRP problem

with 100 customers and 200 requirements using this computer takes 23 minutes (exact timings

1382s, 1387s, 1391s, 1388s, 1383s). Using the 4 cores of the Intel Core i7 3770K CPU (using

8 processes) on the same problem only takes 13 minutes (exact timings 837s, 814s, 817s, 817s,

809s). This is a significant improvement over single core usage however it is far from optimal.

The prototype has significant overheads in its parallelisation code. The first issue is that the code

for retrieving the results from the backend and creating the corresponding models in the front-end

runs sequentially and takes approximately 5 minutes due to the large number (100+) of generated

results for the MONRP skewing the timings.

With this taken into account the speed is still only approximately 2.5x faster on 4 cores rather

than 1 core due to overheads in the prototype tool. A major overhead in the prototype tool is send-

ing the solutions over TCP/IP between the server processes. Another major overhead is that the

149

code currently waits for all the processes to finish processing their current solution before sending

out the next set of solutions to be evaluated. This is simply done for ease of implementation and

in a non-prototype version it needs to be replaced with a better method.

The prototype tool implementation can be scaled up to handle very large problems, by sim-

ply adding more computation power in parallel. Computing power in parallel can be easily and

cheaply obtained by using a Cloud computing service such as Amazon EC2 [159].

Implementing a fully working and optimal parallelisation technique for the CATMOS tech-

niques is an area for future work. However, we will briefly discuss how this could be done.

Firstly, the simple method currently used by the prototype tool of just sharing out the evaluation

step should scale up quite significantly. It will only stop scaling when the single core handling

the genetic algorithms population reaches it limit on performing crossovers and mutations on the

population set.

To go beyond this, the concept of a spatial genetic algorithm can be used. In a spatial genetic

algorithm, there are separate populations in which solutions evolve and a migration step is added

where a few solutions each generation are able to migrate to another population [160]. This method

can be easily parallelised with only minimal bottlenecks. Each computing core can run the NSGA-

II algorithm on its small private population and at the end of a generation it can send a couple of

population members randomly to other computing cores working on the same problem allowing

the problem to solved in parallel.

In a practical implementation for very large problems, both techniques might be used, with

multiple computing cores handling their private populations and farming out the evaluation step to

other computing cores. Implementing this is out of the scope of this thesis and is a possible area

of future work.

The CATMOS technique is potentially highly scalable. The time taken increases against the

problem size at O(n2), which is more than acceptable. The largest problem found in the literature

has 480 randomly generated requirements, which can be implemented in the CATMOS technique

as 480 capabilities and 480 components. This run only took 73:05 minutes on a MacBook Air Mid

2011. The realistic military scenario took approximately 70 minutes with population size 200 and

generation count 200 on a MacBook Air Mid 2011. This suggests that the runtime is practical for

the vast majority of likely problems and if larger problems did emerge than the technique could be

scaled up via parallelisation.

11.3 The CATMOS Technique Benefits

The CATMOS technique provides an objective method for bridging the conceptual gap between

the Defence Lines of Development and military capabilities and enables the consideration of trade-

offs between the Defence Lines of Development, one of the goals for Through Life Capability

Management [161]. Performing trade-offs between the Defence Lines of Development was previ-

ously considered to be a difficult problem and named the Apples and Wednesdays problem [18].

The CATMOS technique supports the through-life scheduling of acquisitions allowing it to be ap-

plied to real world problems. This research addresses very real world problems in Through Life

Capability Management and has real world applications.

150

When applied to the simpler problem of the Multi-objective Next Release Problem, the CAT-

MOS technique allows the consideration of trade-offs in continuous release support, visualisation

of solutions, continuous variable requirements and higher overall tool flexibility (see section 8.5

or Burton et al [3]).

11.4 The CATMOS Technique Limitations

As discussed in section 6.4, Zachman [67] proposes that acquisition problems can be split up into

a ‘why’, ‘how’ and ‘what’ stage, the CATMOS technique only has the ability to handle trade-offs

that handle between the ‘how’ and the ‘what’ stage. It cannot deal with trade-offs between the

‘why’ and ‘how’ stage, which revolve around how the acquisition problem is to be formulated.

As an illustrative example of the three stage of ‘why’, ‘how’ and ‘what’ consider the ‘why’

stage to be ‘Improving the reading level of children aged 10-12’, the ‘how’ stage to be ‘Providing

more books to children aged 10-12’ and the ‘what’ stage to be ‘Providing a mobile library’. The

CATMOS technique is suitable for considering trade-offs between the ‘how’ and the ‘what’ stage.

This means comparing different solutions in the ‘what’ stage against the satisfaction of the ‘how’

stage. For example alternative ‘what’ stages could be ‘Proving more normal libraries’, ‘Providing

children aged 10-12 with tablets loaded with eBooks’ or ‘Providing downloadable books that can

be accessed with existing smartphones’. The CATMOS technique isn’t suitable for performing

trade-offs between the ‘why’ and the ‘how’ stage, such as deciding if the ‘how’ stage should

be either ‘Providing more books to children aged 10-12’, ‘Promoting a new reading program in

schools’ or ‘Providing one on one teaching for struggling students’. This is best handled by an

existing collaborative technique such as TRAiDE [50] or Strategy Kinetics [51].

The CATMOS technique also depends on there being a ‘how’ stage, where the stakeholders

create the objectives for the acquisition rather than the stakeholders just deciding what systems to

acquire without any regard to what they want the systems to do.

The CATMOS technique cannot find unintended consequences such as those caused by Wicked

problems [39]. The best that CATMOS can do is providing visual representations of solutions that

can then be checked by human domain experts (see discussion in section 6.4).

The CATMOS technique relies heavily on domain expert knowledge especially for the ag-

gregation of measurements in the goal tree. How the CATMOS technique converts the Measures

of Performance (section 2.4) to the Measures of Effectiveness (section 2.5) needs to be specified

either as formulas by the domain experts or alternatively be gathered from existing data sets such

as simulation results. This type of information is likely to be domain specific and require domain

expert knowledge for each domain and so is out of scope for thesis. Some examples of this being

done for the military domain are shown in Urwin et al [134] and Venters et al [83].

11.5 Relationship with other research in the existing research fields

We now explain how CATMOS fits into the existing research fields. The technique is motivated

by the relatively small field of Capability Based Acquisition. The CATMOS technique is also

based on work from the fields of Search Based Software Engineering and Early Requirements

151

Engineering.

The Multi-objective Next Release Problem (MONRP) is a simpler acquisition problem than

the TLCM acquisition problem and therefore MONRP can be handled by our technique as well.

This is explored in an early paper by the author [3] and a more updated version of using the

CATMOS technique to solve this problem is shown in section 8.3 as a case study. The technique

and prototype tool offers features not available in other work on the MONRP and offers extensions

to the Multi-objective Next Release Problem; however the tool is far slower. At the time of the

early paper, the tool took hours to perform the same task that took dedicated MONRP tools seconds

to perform. After some reimplementation work by moving the prototype tool to C++ instead of

the interpreted language of the Model-driven Engineering tools the tool currently takes minutes on

the same problems, which in exchange for the additional features gained over the dedicated tools

is more than reasonable.

From the field of goal modelling, there are two main methods for dealing with evaluating

alternative system options [27,162]. Both methods are designed to evaluate two or three alternative

system designs against each other as opposed to evaluating tens of thousands as is done in our

method.

The more similar of the two methods to CATMOS is work by Letier and Lamsweerde [27].

They build on top of KAOS goal modelling for their work [27]. They add measurement annotations

to the KAOS goal tree decomposition, which are similar to the annotations being used by the

CATMOS technique on its goal tree decomposition. Their work uses a formal logic (PCTL [163])

where our work uses an embedded scripting language (Lua [128, 129]). The CATMOS technique

could similarly use PCTL for the annotations on the goal model rather than Lua but this would

be an area of future work. Unlike the CATMOS technique they use a static goal structure and

simply replace the satisfying agents with other agents that perform the same task. This allows

them to evaluate a small number of similarly structured solutions against each other. Whereas the

CATMOS technique uses a dynamic goal structure that allows the evaluation of tens of thousands

of differently structured possible solutions.

Letier and Lamsweerde [27] work supports the use of Probability Density Functions (PDFs)

for the measurements. These capture probability distributions for measurements rather than single

values being used by the CATMOS technique. Adding the ability to use PDFs to the CATMOS

technique is an area of future work. This could possibility be done by using the SciLua libraries

[164] in conjunction with a server running R [165]. Letier and Lamsweerde [27] do most of the

work with PDFs using separate software tools manually rather than having any sort of automated

support.

The other main method for performing trade-offs in goal modelling is goal satisficing [162] as

named in the NFR Framework [162]. This is a qualitative reasoning technique where goals can

be considered to be satisfied, satisficable, deniable or denied [162]. Different system designs pass

different values to the goals and they are aggregated up using different aggregation rules depending

on what is appropriate for the goals involved [162].

152

11.6 Conclusions

This thesis has researched and contributed to the field of system of systems acquisition, most

notably the Through Life Capability Management approach to system of system acquisition. This

has been done by bringing in and combining techniques from the fields of goal modelling, search

based software engineering and model-driven engineering to address key identified research gaps

in Through Life Capability Management relating to trade-off handling.

The thesis research hypothesis is:

The high-level trade-off decision space during system of systems acquisition can be

effectively explored using a technique that generates an approximation of the Pareto

front of the fulfilment of the various organisational objectives against the resources

used in the context of acquiring systems for the system of systems.

The presented CATMOS technique in chapters 7, 8, 9 & 10 has succeeded in meeting the

research hypothesis and has been shown to work on multiple case studies including a realistic

military scenario and on the Multi-Objective Next Release Problem. How the research fits into

the research field of acquisition and into the research fields that have drawn upon by the work has

been discussed in sections 6.4 & 11.5.

The thesis has made contributions to the state of the art in the research fields of Through Life

Capability Management, goal modelling and search based software engineering. These contri-

butions have been detailed at the start of the thesis in section 1.6. Some of these contributions

have been published with two conference papers [1, 3] covering the CATMOS technique and the

second and third case study. The thesis is a successful example of cross-disciplinary research that

combines multiple academic research fields to solve a problem found in industry.

As discussed in the previous sections, the research has done a great deal to address the identi-

fied research gaps of the thesis and has covered a large amount of the original purposed scope for

the project. The research also ties back into one of the original motivating engineering problems

of providing the necessary underlying logic to support the Integrated Management Plan [16] used

in TRAiDE [16, 50], which means that the thesis has not drifted off its original scope. The thesis

has not only added to the state of the art in research but also addressed engineering issues as part

of a doctorate of engineering.

11.7 Future Work

Though the CATMOS technique has substantially addressed the stated research gaps there is still

more work and avenues for further research.

11.7.1 Graphical Improvements

An improvement that could be made is improving the prototype tool’s graphical user interface. At

the moment the goal models produced by the tool are rather basic as shown in chapter 8 figure

8.6. A much better graphical notation was devised in this thesis as shown in chapter 7.2 figure

7.3. This would make the results of the prototype tool more readable. The reason that this has not

153

been done is because it is an extensive implementation task that has little academic value in itself.

After this task, there is further work to be done around testing and improving the usability of the

tool itself with end users.

11.7.2 Case studies

The CATMOS technique has been applied to case studies such as the Multi-objective Next Release

Problem (section 8.3) and a realistic military case study (section 9.5). A future work direction is

performing case studies using real acquisitions and reviewing the results.

11.7.3 Sensitivity Analysis

There is a question of how robust are the acquisition plans to modelling uncertainly in the problem.

Work on this has already begun by Williams et al [4]. Continuing and extending this work is a

clear possible future research direction for the CATMOS technique.

11.7.4 Probability Density Functions

The measurements in the CATMOS technique are precise values, where in the real world there is

uncertainly over the exact values of measurements and instead of asking if an objective is fulfilled,

the question is how likely is it that the objective will be fulfilled. There is research that extends

goal modelling in this way by Letier and Lamsweerde [27] by using probability density functions.

Extending the CATMOS technique to include this is a possible future research direction.

11.7.5 Scalability

As discussed in section 11.2.3, there are extensive improvements that could be made to the proto-

type tools parallelisation with the prototype tool implementation using a very basic and inefficient

approach to parallelisation. A future research direction is in providing better support for paralleli-

sation of the technique.

154

Appendix A

Xtext Grammar Definition

The formal Xtext [133] grammar definition for the CATMOS textual domain specific language is

shown below:

1 grammar org.xtext.Scenario with org.eclipse.xtext.common.Terminals

2
3 import "ScenarioModel"

4 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

5
6 Scenario returns Scenario:

7 {Scenario}

8 (OurObjects+=OurObject (OurObjects+=OurObject)*)?

9 ;

10
11
12 OurObject returns OurObject:

13 OurObject_Impl | Capability_Impl | C a p a b i l i t y P r o v i s i o n |

14 QualitativeValueDictionary | Component | RunConfiguration_Impl |
15 FindTradeOffs | ThroughLifePlanning;
16
17
18 C a p a b i l i t y returns C a p a b i l i t y :
19 Capability_Impl | C a p a b i l i t y P r o v i s i o n ;
20
21 Cost returns Cost:
22 Cost_Impl;

23
24 ComponentU returns ComponentU:

25 ComponentU_Impl | ExistingComponent | AcquirableComponent;
26
27 Constraint returns Constraint:

28 Constraint_Impl | DesireHigh | DesireLow | Budget;
29
30
31 OurObject_Impl returns OurObject:

32 {OurObject}

33 ’OurObject’

34 ;

35

155

36 Capability_Impl returns C a p a b i l i t y :
37 {C a p a b i l i t y }
38 (standAlone?=’standAlone’)?
39 (s e a r c h O b j e c t i v e ?=’searchObjective’)?
40 (sequentialScheduling?=’sequentialScheduling’)?

41 ’Capability’

42 name=EString

43 ’{’

44 (’reuse’ reuse=EIntegerObject)?

45 (’accumulation’ accumulat ion =[Measurement|EString])?
46 (’startDate’ s t a r t D a t e =EString)?
47 (’endDate’ endDate=EString)?
48 (measurements+=Measurement (measurements+=Measurement)*

)?

49 (’decomposes’ ’(’ decomposes+=[C a p a b i l i t y |EString] (","
50 decomposes+=[C a p a b i l i t y |EString])* ’)’)?
51 (’satisfiedBy’ ’(’ satisfiedBy+=[C a p a b i l i t y |EString] (","
52 satisfiedBy+=[C a p a b i l i t y |EString])* ’)’)?
53 ’}’;

54
55 C a p a b i l i t y P r o v i s i o n returns C a p a b i l i t y P r o v i s i o n :
56 {C a p a b i l i t y P r o v i s i o n }
57 (s e a r c h O b j e c t i v e ?=’searchObjective’)?
58 ’CapabilityProvision’

59 name=EString

60 ’{’

61 (’reuse’ reuse=EIntegerObject)?

62 (’startDate’ s t a r t D a t e =EString)?
63 (’endDate’ endDate=EString)?
64 (measurements+=Measurement (measurements+=Measurement)*

)?

65 ’}’;

66
67 QualitativeValueDictionary returns QualitativeValueDictionary:

68 ’Value’

69 name=EString

70 (’<’ lessThan=[QualitativeValueDictionary|EString])?

71 (’>’ greaterThan=[QualitativeValueDictionary|EString])?

72 ;

73
74 Component returns Component:
75 {Component}
76 ’Component’

77 name=EString

78 ’{’

79 (provides+=C a p a b i l i t y P r o v i s i o n (provides+=

C a p a b i l i t y P r o v i s i o n)*)?
80 (upgrades+=Capabi l i tyUpgrade (upgrades+=Capabi l i tyUpgrade

)*)?

81 (requires+=C a p a b i l i t y (requires+=C a p a b i l i t y)*)?
82 (costs+=Cost (costs+=Cost)*)?
83 ’}’;

156

84
85 RunConfiguration_Impl returns RunConfiguration:

86 {RunConfiguration}

87 ’RunConfiguration’

88 name=EString

89 ’{’

90 (’popSize’ popSize=EIntegerObject)?
91 (’genCount’ genCount=EIntegerObject)?
92 ’}’;

93
94 FindTradeOffs returns FindTradeOffs:
95 {FindTradeOffs}
96 ’FindTradeOffs’

97 name=EString

98 ’{’

99 (’popSize’ popSize=EIntegerObject)?
100 (’genCount’ genCount=EIntegerObject)?
101 (components+=ComponentU (components+=ComponentU)*)?

102 (constraints+=Constraint (constraints+=Constraint)*)?

103 ’}’;

104
105 ThroughLifePlanning returns ThroughLifePlanning:
106 {ThroughLifePlanning}
107 ’ThroughLifePlanning’

108 name=EString

109 ’{’

110 (’popSize’ popSize=EIntegerObject)?
111 (’genCount’ genCount=EIntegerObject)?
112 (’startDate’ s t a r t D a t e =EString)?
113 (’endDate’ endDate=EString)?
114 (components+=ComponentU (components+=ComponentU)*)?

115 (constraints+=Constraint (constraints+=Constraint)*)?

116 ’}’;

117
118 EString returns ecore::EString:

119 STRING | ID;

120
121 EBooleanObject returns ecore::EBooleanObject:

122 ’true’ | ’false’;

123
124 EIntegerObject returns ecore::EIntegerObject:

125 ’-’? INT;

126
127 Measurement returns Measurement:
128 {Measurement}
129 ’Measurement’

130 name=EString

131 ’{’

132 (’criticalValue’ c r i t i c a l V a l u e =EFloatOurObject)?
133 (’benchmarkValue’ benchmarkValue=EFloatOurObject)?
134 (’providedValue’ providedValue=EFloatOurObject)?

157

135 (’criticalValues’ ’(’ c r i t i c a l V a l u e s +=QualitativeValue (",
"

136 c r i t i c a l V a l u e s +=QualitativeValue)* ’)’)?
137 (’benchmarkValues’ ’(’ benchmarkValues+=QualitativeValue (

","

138 benchmarkValues+=QualitativeValue)* ’)’)?
139 (’providedValues’ ’(’ providedValues +=QualitativeValue (",

"

140 providedValues +=QualitativeValue)* ’)’)?
141 (’script’ s c r i p t =EString)?
142 ’}’;

143
144 EFloatOurObject returns ecore::EFloatObject:

145 ’-’? INT? ’.’ INT ((’E’|’e’) ’-’? INT)?;

146
147 QualitativeValue returns QualitativeValue:

148 {QualitativeValue}

149 name=EString;

150
151 Capabi l i tyUpgrade returns Capabi l i tyUpgrade:
152 {Capabi l i tyUpgrade}
153 ’CapabilityUpgrade’

154 name=EString

155 ’{’

156 (’targetComponent’ targetComponent=EString)?
157 (’upgrading’ upgrading=[Component|EString])?
158 (capabilityChanges+=Capabi l i tyChange (
159 capabilityChanges+=Capabi l i tyChange)*)?
160 ’}’;

161
162 Cost_Impl returns Cost:
163 {Cost}
164 ’Cost’

165 name=EString

166 (amount=EFloatOurObject)?
167 (’{’

168 (’startAfter’ startAfter=EString)?

169 (’repeatDuration’ repeatDurat ion=EString)?
170 (’stopAfter’ stopAfter=EString)?

171 ’}’)?

172 ;

173
174 Capabi l i tyChange returns Capabi l i tyChange:
175 {Capabi l i tyChange}
176 ’CapabilityChange’

177 name=EString

178 ’{’

179 (capabilities+=C a p a b i l i t y P r o v i s i o n (capabilities+=

C a p a b i l i t y P r o v i s i o n)*)?
180 ’}’;

181
182

158

183 ComponentU_Impl returns ComponentU:

184 {ComponentU}

185 ’Component’

186 name=EString

187 (quantity=EIntegerObject)?

188 ;

189
190 ExistingComponent returns ExistingComponent:
191 {ExistingComponent}
192 ’ExistingComponent’

193 name=EString

194 (quantity=EIntegerObject)?

195 (’startDate’ s t a r t D a t e =EString)?
196 (’endDate’ endDate=EString)?
197 ;

198
199 AcquirableComponent returns AcquirableComponent:
200 {AcquirableComponent}
201 ’AcquirableComponent’

202 name=EString

203 (quantity=EIntegerObject)?

204 (’acquisitionTime’ a c q u i s i t i o n T i m e =EString)?
205 (’lifeSpan’ l i f e S p a n =EString)?
206 ;

207
208
209 Constraint_Impl returns Constraint:

210 {Constraint}

211 ’Constraint’

212 ;

213
214 DesireHigh returns DesireHigh:
215 {DesireHigh}
216 ’DesireHigh’

217 name=EString;

218
219 DesireLow returns DesireLow:
220 {DesireLow}
221 ’DesireLow’

222 name=EString;

223
224 Budget returns Budget:
225 {Budget}
226 ’Budget’

227 name=EString

228 ’{’

229 (’amount’ amount=EFloatOurObject)?
230 (’startDate’ s t a r t D a t e =EString)?
231 (’repeatDuration’ repeatDurat ion=EString)?
232 (’endDate’ endDate=EString)?
233 ’}’;

234

159

235 EDoubleObject returns ecore::EDoubleObject:

236 ’-’? INT? ’.’ INT ((’E’|’e’) ’-’? INT)?;

160

Appendix B

Military Case Study - Textual DSL
Input

1 //Military Scenario

2 ThroughLifePlanning UAV { popSize 200 genCount 200
3 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
4
5 ExistingComponent "Mastiff Fleet" 3 s t a r t D a t e "01/01/2014" endDate

"31/12/2016"

6 ExistingComponent "Vector Fleet" 2 s t a r t D a t e "01/01/2014" endDate "
31/12/2016"

7 ExistingComponent "Troop Regiment" 5 s t a r t D a t e "01/01/2014" endDate
"31/12/2016"

8 ExistingComponent "L118 Light Gun Fleet" 5 s t a r t D a t e "01/01/2014"
endDate "31/12/2016"

9 ExistingComponent "Mobile Artillery Battlefield Radar" 5 s t a r t D a t e
"01/01/2014" endDate "01/08/2014"

10 ExistingComponent "Land Rover 101 FC Fleet" 5 s t a r t D a t e "01/01/2014
" endDate "31/12/2016"

11 ExistingComponent "Buffalo Fleet" 1 s t a r t D a t e "01/01/2014" endDate
"31/12/2016"

12 ExistingComponent "Engineering Team with Equipment" 1 s t a r t D a t e "
01/01/2014" endDate "31/12/2016"

13 ExistingComponent "Oshkosh Wheeled Tanker Fuel Fleet" 2 s t a r t D a t e "
01/01/2014" endDate "31/12/2016"

14 ExistingComponent "Oshkosh Wheeled Tanker Water Fleet" 3 s t a r t D a t e
"01/01/2014" endDate "31/12/2016"

15 ExistingComponent "Leyland DROPS Fleet" 4 s t a r t D a t e "01/01/2014"
endDate "31/12/2016"

16 ExistingComponent "Global Hawk" 1 s t a r t D a t e "01/01/2014" endDate "
31/12/2016"

17 ExistingComponent "Reacher Fleet" 1 s t a r t D a t e "01/01/2014" endDate
"31/12/2016"

18 ExistingComponent "Mowag Duro III Fleet" 1 s t a r t D a t e "01/01/2014"
endDate "31/12/2016"

19 ExistingComponent "Bowman" 1 s t a r t D a t e "01/01/2014" endDate "
31/12/2016"

161

20 ExistingComponent "L118 Existing Service Contract" 1 s t a r t D a t e "
01/01/2014" endDate "01/01/2015"

21
22 AcquirableComponent "Mastiff Fleet" 5 a c q u i s i t i o n T i m e "2 months"

l i f e S p a n "15 years"

23 AcquirableComponent "Vector Fleet" 5 a c q u i s i t i o n T i m e "2 months"
l i f e S p a n "15 years"

24 AcquirableComponent "L118 Light Gun Fleet New" 5 a c q u i s i t i o n T i m e "6
months" l i f e S p a n "15 years"

25 AcquirableComponent "Land Rover 101 FC Fleet" 5 a c q u i s i t i o n T i m e "6
months" l i f e S p a n "15 years"

26 AcquirableComponent "Global Hawk" 5 a c q u i s i t i o n T i m e "8 months"
l i f e S p a n "15 years"

27 AcquirableComponent "MQ-9 Reaper" 5 a c q u i s i t i o n T i m e "10 months"
l i f e S p a n "15 years"

28 AcquirableComponent "SAS Training" 5 a c q u i s i t i o n T i m e "9 months"
l i f e S p a n "25 years"

29 AcquirableComponent "Mobile Artillery Battlefield Radar Foreign" 5
a c q u i s i t i o n T i m e "6 months" l i f e S p a n "15 years"

30 AcquirableComponent "L118 New Service Contract" 1 a c q u i s i t i o n T i m e "
0 months" l i f e S p a n "10 years"

31
32 Budget "Money" { amount 50.0 s t a r t D a t e "05/03/2014" }
33 Budget "Money" { amount 45.0 s t a r t D a t e "01/09/2014" }
34 Budget "Money" { amount 45.0 s t a r t D a t e "01/12/2014" }
35 Budget "Money" { amount 45.0 s t a r t D a t e "01/06/2016" }
36
37 }

38
39 //searchObjective

40 C a p a b i l i t y "Overall Score"
41 {

42 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
43 Measurement "Overall Score" { c r i t i c a l V a l u e 0.0 benchmarkValue 1.0

s c r i p t ’output = OverallScore()’ }
44 decomposes ("Route Clearance","Hold Forward Base", "Prevent

Enemy Crossings")

45 }

46
47 s e a r c h O b j e c t i v e
48 C a p a b i l i t y "Route Clearance"
49 {

50 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
51 Measurement "Route Clearance"
52 { c r i t i c a l V a l u e 0.0 benchmarkValue 1.0 s c r i p t "output =

RouteClearance()" }

53 decomposes ("Ground Fire Power", "Hard Target Removal", "Mine
Clearance Solution", "Command and Control")

54 }

55
56 C a p a b i l i t y "Ground Fire Power"
57 {

162

58 accumulat ion "Ground Fire Power"
59 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
60 Measurement "Ground Fire Power" { c r i t i c a l V a l u e 0.0 benchmarkValue

7000.0 }

61 }

62
63 C a p a b i l i t y "Hard Target Removal"
64 {

65 accumulat ion "Hard Target Removal"
66 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
67 Measurement "Hard Target Removal" { c r i t i c a l V a l u e 0.0

benchmarkValue 100.0 }
68 }

69
70 C a p a b i l i t y "Mine Clearance Solution"
71 {

72 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
73 Measurement "Chance of Death" { c r i t i c a l V a l u e 10.0

benchmarkValue 0.0 }
74 Measurement "Mine Clearance Per Day" { c r i t i c a l V a l u e 10.0

benchmarkValue 40.0 }
75 }

76
77 s e a r c h O b j e c t i v e
78 C a p a b i l i t y "Hold Forward Base"
79 {

80 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
81 Measurement "Hold Forward Base"
82 { c r i t i c a l V a l u e 0.0 benchmarkValue 1.0 s c r i p t "output =

HoldForwardBase()" }

83 decomposes ("Establish Forward Base", "Supply Forward Base")
84 }

85
86 C a p a b i l i t y "Establish Forward Base"
87 {

88 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
89 }

90
91 C a p a b i l i t y "Supply Forward Base"
92 {

93 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
94 Measurement "Supply Forward Base"
95 { c r i t i c a l V a l u e 0.0 benchmarkValue 1.0 s c r i p t "output =

SupplyForwardBase()" }

96 decomposes ("Supply Water", "Supply Fuel", "Supply Goods")
97 }

98
99 C a p a b i l i t y "Supply Water"

100 {

101 accumulat ion "Water Liters"
102 s t a r t D a t e "01/01/2014" endDate "31/12/2016"

163

103 Measurement "Water Liters" { c r i t i c a l V a l u e 0.0 benchmarkValue
50000.0 }

104 }

105
106 C a p a b i l i t y "Supply Fuel"
107 {

108 accumulat ion "Fuel Liters"
109 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
110 Measurement "Fuel Liters" { c r i t i c a l V a l u e 0.0 benchmarkValue

70000.0 }

111 }

112
113 C a p a b i l i t y "Supply Goods" //Includes Ammo
114 {

115 accumulat ion "Goods Kilograms"
116 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
117 Measurement "Goods Kilograms" { c r i t i c a l V a l u e 0.0 benchmarkValue

75000.0 }

118 }

119
120 s e a r c h O b j e c t i v e
121 C a p a b i l i t y "Prevent Enemy Crossings"
122 {

123 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
124 Measurement "Prevent Enemy Crossings"
125 { c r i t i c a l V a l u e 0.75 benchmarkValue 1.0 s c r i p t "output =

PreventEnemyCrossings()" }

126 decomposes ("Detect Enemy Crossings", "Stopping Enemy Crossings")
127 }

128
129 standAlone
130 C a p a b i l i t y "Detect Enemy Crossings"
131 {

132 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
133 Measurement "Detect Enemy Crossings" { c r i t i c a l V a l u e 0.0

benchmarkValue 1.0
134 s c r i p t ’output = DetectEnemyCrossings()’
135 }

136 }

137
138 C a p a b i l i t y "Stopping Enemy Crossings"
139 {

140 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
141 Measurement "Enemy Crossings Stopped Percentage" { c r i t i c a l V a l u e

0.75 benchmarkValue 1.0
142 s c r i p t ’output = StopEnemyCrossings()’
143 }

144 decomposes ("Ground Fire Power", "Command and Control", "
Surveillance Moving Targets")

145 }

146
147 C a p a b i l i t y "Command and Control"

164

148 {

149 accumulat ion "Command and Control Infrastructure"
150 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
151 Measurement "Command and Control Infrastructure" { c r i t i c a l V a l u e

0.0 benchmarkValue 100.0 }
152 }

153
154 C a p a b i l i t y "Surveillance"
155 {

156 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
157 Measurement "Surveillance"
158 { c r i t i c a l V a l u e 0.0 benchmarkValue 1.0 s c r i p t "output =

Surveillance()" }

159 decomposes ("Surveillance Static Targets", "Surveillance Moving
Targets")

160 }

161
162 C a p a b i l i t y "Surveillance Static Targets"
163 {

164 accumulat ion "Surveillance Static Targets"
165 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
166 Measurement "Surveillance Static Targets" { c r i t i c a l V a l u e 0.0

benchmarkValue 100.0 }
167 }

168
169 C a p a b i l i t y "Surveillance Moving Targets"
170 {

171 accumulat ion "Surveillance Moving Targets"
172 s t a r t D a t e "01/01/2014" endDate "31/12/2016"
173 Measurement "Surveillance Moving Targets" { c r i t i c a l V a l u e 0.0

benchmarkValue 100.0 }
174 }

175
176 //Existing System

177 Component "Mastiff Fleet" //100 Mastiff’s
178 {

179 //12mm Heavy Machine Gun

180 C a p a b i l i t y P r o v i s i o n "Ground Fire Power" { reuse 1 Measurement "
Ground Fire Power" { providedValue 100.0 } }

181
182 //Carries

183 C a p a b i l i t y P r o v i s i o n "Troop Transport" { reuse 3 }

184
185 Cost Money 25.0 // £250 ,000 each
186 }

187
188 Component "Vector Fleet" //100 Vectors
189 {

190 //2 Small Machine Guns

191 C a p a b i l i t y P r o v i s i o n "Ground Fire Power" { reuse 1 Measurement "
Ground Fire Power" { providedValue 60.0 } }

192

165

193 //Carries

194 C a p a b i l i t y P r o v i s i o n "Troop Transport" { reuse 1 }

195
196 Cost Money 15.0 // £150 ,000 each
197 }

198
199 Component "Troop Regiment"
200 {

201 C a p a b i l i t y P r o v i s i o n "Ground Fire Power" { reuse 1 Measurement "
Ground Fire Power" { providedValue 1000.0 } }

202 C a p a b i l i t y P r o v i s i o n "Surveillance Static Targets" { reuse 1

Measurement "Surveillance Static Targets" { providedValue 3.0
}}

203 C a p a b i l i t y P r o v i s i o n "Surveillance Moving Targets" { reuse 1

Measurement "Surveillance Moving Targets" { providedValue 3.0
}}

204 C a p a b i l i t y "Troop Transport" {}
205 }

206
207 //Hard Target Removal - Existing

208 Component "L118 Light Gun Fleet" //10 Artillery Pieces
209 {

210 C a p a b i l i t y P r o v i s i o n "Hard Target Removal" { reuse 1 Measurement "
Hard Target Removal" { s c r i p t "output = LightGun()" } }

211 C a p a b i l i t y "Light Gun Tow" {} C a p a b i l i t y "L118 Service Contract" {}
212 Cost Money 5.0 // £500 ,000 each
213 }

214
215 Component "L118 Existing Service Contract"
216 {

217 C a p a b i l i t y P r o v i s i o n "L118 Service Contract" {}

218 }

219
220 Component "L118 New Service Contract" // £ 1 5 million maintenance
221 {

222 C a p a b i l i t y P r o v i s i o n "L118 Service Contract" {}

223 Cost Money 15.0
224 }

225
226 Component "L118 Light Gun Fleet New" //10 Artillery Pieces
227 {

228 C a p a b i l i t y P r o v i s i o n "Hard Target Removal" { reuse 1 Measurement "
Hard Target Removal" { s c r i p t "output = LightGun()" } }

229 C a p a b i l i t y "Light Gun Tow" {}
230 Cost Money 5.0 // £500 ,000 each
231 }

232
233 Component "Mobile Artillery Battlefield Radar"
234 {

235 C a p a b i l i t y P r o v i s i o n "Surveillance Moving Targets" { reuse 1

Measurement "Surveillance Moving Targets" { providedValue 5.0
}}

166

236 C a p a b i l i t y "Radar Mount" {}
237 }

238
239 Component "Mobile Artillery Battlefield Radar Foreign"
240 {

241 C a p a b i l i t y P r o v i s i o n "Surveillance Moving Targets" { reuse 1

Measurement "Surveillance Moving Targets" { providedValue 5.0
}}

242 C a p a b i l i t y "Radar Mount" {}
243 Cost Money 15.0
244 }

245
246 Component "Land Rover 101 FC Fleet" //Tows The Artillery Piece Into

Position

247 {

248 C a p a b i l i t y P r o v i s i o n "Light Gun Tow" { reuse 1 }

249 C a p a b i l i t y P r o v i s i o n "Radar Mount" {}

250 Cost Money 12.0 // £120 ,000 each
251 }

252
253 //Mine Clearance

254 Component "Buffalo Fleet"
255 {

256 C a p a b i l i t y P r o v i s i o n "Mine Clearance Solution" {

257 Measurement "Chance of Death" { providedValue 5.0 }
258 Measurement "Mine Clearance Per Day" { providedValue 50.0 }

}

259 }

260
261 //Establish Forward Base

262 Component "Engineering Team with Equipment"
263 {

264 C a p a b i l i t y P r o v i s i o n "Establish Forward Base" {

265 Measurement "Base Quality" { providedValue 0.0 s c r i p t "
output = BaseQuality()"}

266 }

267 C a p a b i l i t y P r o v i s i o n "Command and Control" { reuse 1

268 Measurement "Command and Control Infrastructure" {
providedValue 40.0 } }

269
270 Cost Money 5.0
271 }

272
273 //Supply Forward Base

274 Component "Oshkosh Wheeled Tanker Fuel Fleet" //10
275 {

276 C a p a b i l i t y P r o v i s i o n "Supply Fuel" { reuse 1 Measurement "Fuel
Liters" { providedValue 20000.0 } }

277 Cost Money 3.0
278 }

279
280 Component "Oshkosh Wheeled Tanker Water Fleet" //10

167

281 {

282 C a p a b i l i t y P r o v i s i o n "Supply Water" { reuse 1 Measurement "Water
Liters" { providedValue 18000.0 } }

283 Cost Money 3.0
284 }

285
286 Component "Leyland DROPS Fleet" //10
287 {

288 C a p a b i l i t y P r o v i s i o n "Supply Goods" { reuse 1 Measurement "Goods
Kilograms" { providedValue 15000.0 } }

289 Cost Money 3.0
290 }

291
292 Component "Global Hawk"
293 {

294 C a p a b i l i t y P r o v i s i o n "Surveillance Static Targets" { reuse 1

Measurement "Surveillance Static Targets" { providedValue 45.0
}}

295 C a p a b i l i t y P r o v i s i o n "Surveillance Moving Targets" { reuse 1

Measurement "Surveillance Moving Targets" { providedValue 25.0
}}

296 Cost Money 125.0 // £125 million
297 }

298
299 Component "Reacher Fleet"
300 {

301 C a p a b i l i t y P r o v i s i o n "Command and Control" { reuse 1

302 Measurement "Command and Control Infrastructure" {
providedValue 20.0 } }

303 }

304
305 Component "Mowag Duro III Fleet"
306 {

307 C a p a b i l i t y P r o v i s i o n ReacherMount { reuse 1 }

308 }

309
310 Component "Bowman"
311 {

312 C a p a b i l i t y P r o v i s i o n "Command and Control" { reuse 1

313 Measurement "Command and Control Infrastructure" {
providedValue 40.0 } }

314 }

315
316 Component "MQ-9 Reaper"
317 {

318 C a p a b i l i t y P r o v i s i o n "Hard Target Removal" { reuse 1 Measurement "
Hard Target Removal" { providedValue 30.0 } }

319 C a p a b i l i t y P r o v i s i o n "Surveillance Static Targets" { reuse 1

Measurement "Surveillance Static Targets" { providedValue 10.0
}}

320 C a p a b i l i t y P r o v i s i o n "Surveillance Moving Targets" { reuse 1

Measurement "Surveillance Moving Targets" { providedValue 5.0

168

}}

321 Cost Money 10.5 // £ 1 0 .5 million
322 }

323
324 Component "SAS Training"
325 {

326 Capabi l i tyUpgrade "Better Training"
327 {

328 targetComponent "Troop Regiment"
329 Capabi l i tyChange "mod"
330 {

331 C a p a b i l i t y P r o v i s i o n "Ground Fire Power" { reuse 1

Measurement "Ground Fire Power" { providedValue
1500.0 } }

332 C a p a b i l i t y P r o v i s i o n "Surveillance Static Targets" {

reuse 1 Measurement "Surveillance Static
Targets" { providedValue 5.0 }}

333 C a p a b i l i t y P r o v i s i o n "Surveillance Moving Targets" {

reuse 1 Measurement "Surveillance Moving
Targets" { providedValue 5.0 }}

334 }

335 }

336 Cost Money 8.0 // £ 8 Million
337 }

B.1 Military Acquisition Scenario - Lua Script

The Lua script that defines the functions used by the textual DSL input above is shown below:

1 f u n c t i o n RouteClearance()

2 re turn 0.25 * getCapability("Ground Fire Power") + 0.25 *

getCapability("Hard Target Removal") + 0.25 * getCapability("

Mine Clearance Solution") + 0.25 * getCapability("Command and

Control")

3 end
4
5 f u n c t i o n LightGun()

6 re turn 5.0 * getCapability("Surveillance Static Targets") + 5.0 *

getCapability("Surveillance Moving Targets")

7 end
8
9 f u n c t i o n MineClearance()

10 re turn 0.8 * getCapability("Mine Clearance Chance of Death") + 0.2

* getCapability("Mine Clearance Per Day")

11 end
12
13 f u n c t i o n SupplyForwardBase()

14 re turn 0.34 * getCapability("Supply Water") + 0.33 * getCapability(

"Supply Fuel") + 0.33 * getCapability("Supply Goods");

15 end
16
17 f u n c t i o n Surveillance()

169

18 re turn 0.5 * getCapability("Surveillance Static Targets") + 0.5 *

getCapability("Surveillance Moving Targets");

19 end
20
21 f u n c t i o n BaseQuality()

22 i f getCapability("Supply Goods") > 0.3 then
23 re turn 1.0

24 end
25 re turn getCapability("Supply Goods") * 0.3;

26 end
27
28 f u n c t i o n DetectEnemyCrossings()

29 re turn getCapability("Surveillance Moving Targets");

30 end
31
32 f u n c t i o n StopEnemyCrossings()

33 re turn math.min(getCapability("Ground Fire Power")*7.0,

getCapability("Command and Control"));

34 end
35
36 f u n c t i o n HoldForwardBase()

37 re turn 0.5 * getCapability("Establish Forward Base") + 0.5 *

getCapability("Supply Forward Base");

38 end
39
40 f u n c t i o n PreventEnemyCrossings()

41 re turn math.min(DetectEnemyCrossings(), StopEnemyCrossings())

42 end
43
44 f u n c t i o n OverallScore()

45 re turn 0.333 * getCapability("Route Clearance") + 0.333 *

getCapability("Hold Forward Base") + 0.334 * getCapability("

Stopping Enemy Crossings")

46 end

170

Glossary

Word Definition

Agent A system, person or process that can satisfy a goal.

[21]

Capability An acquisition objective. Equivalent concept to a

goal but using Through Life Capability Management

terminology. [7]

CATMOS Capability Acquisition Technique with Multi-

objective Search - The main work provided by this

thesis.

Component An acquirable thing from one of the Defence Lines

of Development. Similar concept to agent but with

wider implicit scope.

Defence Lines Of Development

(DLoD)

The eight types of things that work together to pro-

duce military capability. Training, Equipment, Per-

sonnel, Information, Doctrine and Concepts, Organ-

isational Structure, Infrastructure and Logistics. [17]

Goal An acquisition objective. [21]

Large Scale Complex IT System

(LSCITS)

A very large scale system that has been created from

the combination of numerous other systems working

together to achieve a common goal. For more in-

depth information see the Ultra Large Scale Systems

Report [45].

Meta-heuristic search A method for finding approximately correct answers

for problems where the calculation of exact answers

is computationally infeasible. [111]

Multi-objective search An extension to meta-heuristic search for finding a

Pareto front of results rather than a single good re-

sult. [112]

171

Word Definition

Pareto Front A common technique used in the field of economics

named after its inventor Vilfredo Pareto (1848 -

1923). It focuses on the concept of there being mul-

tiple objectives and maximising objectives without

lowering the value of other objectives whilst doing

so.

System of systems (SoS) Same as Large Scale Complex IT Systems.

Through Life Capability Man-

agement (TLCM)

The management of acquisition by using the abstrac-

tion notion of capability and maintaining it through

life. [7]

Through Life Management

(TLM)

The management of acquisition by periodically up-

dating equipment. [7]

172

Bibliography

[1] F. Burton, R. Paige, S. Poulding, and S. Smith, “System of systems acquisition trade-offs,”

in 2014 Conference on Systems Engineering Research (CSER 2014), (Los Angeles, USA),

Mar. 2014.

[2] F. R. Burton and S. Poulding, “Complementing metaheuristic search with higher abstraction

techniques,” Proc. 1st International Workshop on Combining Modelling and Search-Based

Software Engineering, 2013.

[3] F. R. Burton, R. F. Paige, L. M. Rose, D. S. Kolovos, S. Poulding, and S. Smith, “Solv-

ing acquisition problems using model-driven engineering,” in Modelling Foundations and

Applications, pp. 428–443, Springer, 2012.

[4] J. R. Williams, F. R. Burton, R. F. Paige, and F. A. Polack, “Sensitivity analysis in model-

driven engineering,” in Model Driven Engineering Languages and Systems, pp. 743–758,

Springer, 2012.

[5] R. F. Paige, P. J. Brooke, X. Ge, C. D. Power, F. R. Burton, and S. Poulding, “Revealing

complexity through domain-specific modelling and analysis,” in Large-Scale Complex IT

Systems. Development, Operation and Management, pp. 251–265, Springer, 2012.

[6] D. Cliff, J. Keen, M. Kwiatkowska, J. McDermid, and I. Sommerville, “Large scale com-

plex it systems (LSCITS) research programme. research proposal to the uk engineering and

physical sciences research council (2006).”

[7] T. McKane, “Enabling acquisition change - an examination of the Ministry of Defence’s

ability to undertake Through Life Capability Management,” tech. rep., Ministry of Defence,

June 2006.

[8] Ministry of Defence, “Acquisition operating framework - through life capabil-

ity management.” http://www.aof.mod.uk/aofcontent/tactical/tlcm/content/

introductiontotlcm.htm Version 1.1.6, July 2010.

[9] Command and Battlespace Management Board, “Network enabled capability - JSP 777

edition 1,” tech. rep., Ministry of Defense, January 2005.

[10] S. Butler, “Network Enabled Capability: Alive and Well in the MoD,” tech. rep., RUSI

C4ISTAR Conference, October 2008.

173

[11] E. Quintana, “Is NEC Dead? An Analysis of Industry’s Perspective on the UK’s NEC

Programme,” tech. rep., Military Sciences Department, Royal United Services Institute for

Defence and Stragetic Studies, 2007.

[12] Y. Yue and M. Henshaw, “A Holistic View of UK Military Capability Development,” De-

fense & Security Analysis, vol. 25, pp. 53 – 67, 2009.

[13] J. Bourn, “Through-life management,” tech. rep., National Audit Office, May 2003.

[14] House of Commons Committee of Public Accounts, Building an Air Manoeuvre Capability:

The Introduction of the Apache Helicopter (House of Commons Papers). Stationery Office

Books, 2002.

[15] J. Reid, A. Johnson, D. Browne, Lord Drayson, and A. Michael, “Defence industial strategy

- Defence white paper,” tech. rep., Ministry of Defence, December 2005.

[16] A. J. Daw, “On the use of synthetic environments for the through life delivery of capabil-

ity,” in Analytical Support to Defence Transformation, pp. Meeting Proceedings RTO–MP–

SAS–055, Paper 9, 2005.

[17] Ministry of Defence, “Defence lines of development.” http://www.aof.mod.uk/

aofcontent/strategic/guide/sg_dlod.htm [Last accessed January 2010].

[18] B. Barton and D. Whittington, “Informing high level trades - some novel techniques,” in

13th ICCRTS, March 2008.

[19] B. J. Brittain, “Through-life capability management one year on,” Royal United Services

Institute Defence Systems, pp. 30–32, June 2008.

[20] D. Cliff, J. Keen, M. Kwiatkowska, J. McDermid, and I. Sommerville, “LSCITS initia-

tive overview.” http://lscits.cs.bris.ac.uk/overview.html [Last Accessed Au-

gust 2014].

[21] A. Lamsweerde, A. Dardenne, B. Delcourt, and F. Dubisy, “The KAOS Project: Knowledge

acquisition in automated specifications of software, proceeding AAAI Spring Symposium

series, Track: Design of composite systems,” 1991.

[22] E. S. K. Yu, “Towards modelling and reasoning support for early-phase requirements en-

gineering,” Requirements Engineering, IEEE International Conference on, vol. 0, pp. 226–

236, 1997.

[23] MODAF Group, Ministry of Defence, “MOD architecture framework.” http://www.mod.

uk/DefenceInternet/AboutDefence/WhatWeDo/InformationManagement/MODAF/

[Last Accessed January 2013].

[24] A. Van Lamsweerde, “Goal-oriented requirements engineering: A guided tour,” in Require-

ments Engineering, 2001. Proceedings. Fifth IEEE International Symposium on, pp. 249–

262, IEEE, 2001.

174

[25] A. Wyer and D. Long, “Modelling capability in support of transition management,” in Sim-

TecT 2006, Simulation Conference, 2006.

[26] F. Bernier, M. Couture, G. Dussault, C. Lalancette, F. Lemieux, M. Lizotte, M. Mokhtari,

and S. Lam, “Capdem - toward a capability engineering process,” tech. rep., Defence R &

D Canada, September 2005.

[27] E. Letier and A. Van Lamsweerde, “Reasoning about partial goal satisfaction for require-

ments and design engineering,” in ACM SIGSOFT Software Engineering Notes, vol. 29,

pp. 53–62, ACM, 2004.

[28] Y. Zhang, A. Finkelstein, and M. Harman, “Search based requirements optimisation: Ex-

isting work and challenges,” Requirements Engineering: Foundation for Software Quality,

pp. 88–94, 2008.

[29] Oxford University Press, “Oxford dictionaries.” http://oxforddictionaries.com/

view/entry/m_en_gb0121230 [Last Accessed August 2014], April 2014.

[30] Ministry of Defence, “Governing policy (gp) 1.1 - logistics readiness and sustainability re-

quirements.” http://www.aof.mod.uk/aofcontent/tactical/sse/content/ksa1/

gp101.htm [Last Accessed August 2010].

[31] D. J. Hurley, “Defence capability development manual,” tech. rep., Australian Department

of Defence, 2006.

[32] S. A. Fry, “Joint publication 1-02 - Department of Defence dictionary of military and asso-

ciated terms,” tech. rep., Department of Defence, July 2010 (Last Amended).

[33] N. Sproles, “Coming to grips with measures of effectiveness,” Systems Engineering, vol. 3,

no. 1, pp. 50–58, 2000.

[34] A. Korzybski, “A non-aristotelian system and its necessity for rigour in mathematics and

physics,” Science and Sanity, pp. 747 – 761, 1933.

[35] R. G. Sargent, “Verification and validation of simulation models,” in WSC ’05: Proceedings

of the 37th conference on Winter simulation, pp. 130–143, Winter Simulation Conference,

2005.

[36] B. Selic, “The pragmatics of model-driven development,” IEEE software, vol. 20, no. 5,

pp. 19–25, 2003.

[37] S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul of model-driven

software development,” IEEE Software, vol. 20, pp. 42–45, 2003.

[38] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,” Computer, vol. 39,

pp. 25–31, 2006.

[39] H. W. J. Rittel and M. M. Webber, “Dilemmas in a general theory of planning,” Policy

Sciences, vol. 4, pp. 155–169, June 1973.

175

[40] B. Newsome, “Don’t get your mass kicked: A management theory of military capability,”

Defense & Security Analysis, vol. 19, pp. 131 – 148, 2003.

[41] C. von Clausewitz, On War. Princeton University Press, 1989.

[42] A. J. Daw, “New process and structure thinking for capability development,” in 9th Inter-

national Command and Control Research and Technology Symposium, September 2004.

[43] Ministry of Defence, “Acquisition operating framework - introduction to urgent oper-

ational requirements (uor).” http://www.aof.mod.uk/aofcontent/tactical/tlcm/

content/uor/uor_intro.htm [Last Accessed September 2010].

[44] A. Fox, D. Cliff, T. Hoare, M. Fordham, N. Masterson-Jones, J. Mcdermid, M. Richmond,

M. Rodd, and M. Thomas, “Engineering Values in IT,” tech. rep., The Royal Academy of

Engineering, July 2009.

[45] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger, T. Longstaff, R. Kazman,

M. Klein, D. Schmidt, K. Sullivan, and K. Wallnau, “Ultra-Large-Scale Systems - The

Software Challenge of the Future,” tech. rep., Software Engineering Institute, Carnegie

Mellon, June 2006.

[46] A. J. Daw, “On the wicked problem of defence acquisition,” in AIAA Aviation Technology,

Integration and Operations Conference Challenges in Systems Engineering for Advanced

Technology Programmes, BAE Systems, 2007.

[47] Working group from the The Royal Academy of Engineering and The British Computer So-

ciety, “The challenges of complex IT projects,” tech. rep., Royal Academy of Engineering

and The British Computer Society, January 2010.

[48] N. Roberts, “Wicked problems and network approaches to resolution,” International Public

Management Review, pp. 1–19, 2000.

[49] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Fowler, J. Grenning, J. High-

smith, A. Hunt, R. Jeffries, J. Kern, et al., “Manifesto for Agile Software Developmenti.”

http://www.agilemanifesto.org [Last Accessed September 2014], 2001.

[50] G. Symes and A. J. Daw, “On the use of information management in the context of Through

Life Capability Management (TLCM),” Journal of Naval Engineering, vol. 45 Book 2,

2009.

[51] R. E. Horn and R. P. Weber, “New tools for resolving wicked problems: Mess mapping

and resolution mapping processes.” http://www.strategykinetics.com/New_Tools_

For_Resolving_Wicked_Problems.pdf [Last accessed January 2010].

[52] R. Dawkins and J. R. Krebs, “Arms races between and within species,” Proceedings of the

Royal Society of London. Series B, Biological Sciences, vol. 205, no. 1161, pp. 489–511,

1979.

176

[53] B. Gray, “Review of acquisition for the secretary of state for defence.” http://www.

bipsolutions.com/docstore/ReviewAcquisitionGrayreport.pdf [Last Accessed

August 2014], October 2009.

[54] L. van Valen, “A new evolutionary law,” Evolutionary Theory, vol. 1, pp. 1–30, 1973.

[55] M. Benton, “Red queen hypothesis,” Palaeobiology (ed. DEG Briggs & PR Crowther).

Blackwells. Oxford, 1995.

[56] L. Caroll, Through the looking glass, Signet Classic Edition, pp. 146 – 147. New Amercian

Library, 2000.

[57] P. R. Newton, “Future air and space operational concept,” tech. rep., Ministry of Defence,

August 2009.

[58] J. Cartlidge and S. Bullock, “Unpicking tartan CIAO plots: Understanding irregular coevo-

lutionary cycling,” Adaptive Behavior, vol. 12, no. 2, pp. 69–92, 2004.

[59] R. A. Watson and J. B. Pollack, “Coevolutionary dynamics in a minimal substrate,” in

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001),

pp. 702–709, Morgan Kaufmann, 2001.

[60] J. Cartlidge and S. Bullock, “Learning lessons from the common cold: How reducing par-

asite virulence improves coevolutionary optimization,” in In Fogel, D. (Ed.), Congress on

Evolutionary Computation, pp. 1420–1425, IEEE Press, 2002.

[61] J. Cartlidge and S. Bullock, “Combating coevolutionary disengagement by reducing para-

site virulence,” Evolutionary Computation, vol. 12, pp. 193–222, 2004.

[62] B. Sinervo and C. Lively, “The rock-paper-scissors game and the evolution of alternative

male strategies,” Nature, vol. 380, pp. 240–243, 1996.

[63] A. J. Daw, “Challenges in systems engineering for advanced technology programmes -

the wicked problem of defence acquisition,” in AIAA Aviation Technology, Integration and

Operations Conference, September 2007.

[64] I. Bailey, “Brief introduction to MODAF with v1.2 updates.” http://www.

modelfutures.com/file_download/6/Intro%20to%20MODAF%20v1_2.pdf,

September 2008.

[65] MODAF Group, Ministry of Defence, “Defence lines of development analysis with modaf.”

http://www.mod.uk/NR/rdonlyres/1F17FAAA-04C3-4CDD-B2C8-037AC0EA63F6/

0/20090210_MODAFDLODAnalysis_V1_0_U.pdf [Last Accessed January 2013].

[66] J. Zachman, “Keynote speech, integrated enterprise architecture conference,” 2010.

[67] J. A. Zachman, “A framework for information systems architecture,” IBM Systems Journal,

vol. 26, 1987.

177

[68] C. W. Holsapple and M. P. Sena, “Erp plans and decision-support benefits,” Decision Sup-

port Systems, vol. 38, no. 4, pp. 575 – 590, 2005.

[69] MODAF Group, Ministry of Defence, “MOD architecture framework (MODAF)

meta model (m3).” http://www.mod.uk/DefenceInternet/AboutDefence/

CorporatePublications/InformationManagement/MODAF/ModafMetaModel.htm

[Last Accessed January 2013].

[70] L. H. Chiew, “The singapore ministry of defence’s approach to enterprise architecture,” in

Integrated Enterprise Architecture Conference 2010.

[71] T. Engevall, “Enterprise architecture in the Swedish armed forces,” in Integrated Enterprise

Architecture Conference 2010, 2010.

[72] MODAF Group, Ministry of Defence, “MOD architecture framework - viewpoints

and views.” http://www.mod.uk/DefenceInternet/AboutDefence/WhatWeDo/

InformationManagement/MODAF/ViewpointsAndViews.htm [Last Accessed January

2013].

[73] J. L. Jaensch and D. P. Mahoney, “Modeling and simulation master plan,” tech. rep., De-

partment of Defence, October 1995.

[74] J. Logsdon and R. Wittman, “Standardization, Transformation, & OneSAF,” Improving

M&S Interoperability, Reuse and Efficiency in Support of Current and Future Forces, pp. pp.

20–1 – 20–14, RTO–MP–MS–056, Paper 20, 2007.

[75] “One Semi-Automated Forces (OneSAF) Mission Needs Statement (MNS),” May 1997.

[76] C. R. Karr, “OneSAF behaviours, OneSAF users conference.” http://www.onesaf.

net/community/documents/Papers_Presentations/OneSAF_UsersConference_

2004/OneSAF-UC04_Behaviors.pdf [Last Accessed August 2014], 2004.

[77] IEEE-SA Standards Board, “IEEE 1516-2000 - standard for modeling and simulation high

level architecture - framework and rules,” tech. rep., September 2000.

[78] J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly, “The Department of Defense high

level architecture,” in Proceedings of the 29th conference on Winter simulation, pp. 142–

149, IEEE Computer Society, 1997.

[79] J. Dingel, D. Garlan, and C. Damon, “Bridging the HLA: A Case Study in Compos-

ing Publish-Subscribe Systems,” International Conference on Software Engineering 2002,

2002.

[80] R. Kewley, J. Cook, N. Goerger, D. Henderson, and E. Teague, “Federated simulations for

systems of systems integration,” in WSC ’08: Proceedings of the 40th Conference on Winter

Simulation, pp. 1121–1129, Winter Simulation Conference, 2008.

[81] R. C. Zittel, “The reality of simulation-based acquisition–and an example of US military

implementation,” tech. rep., DTIC Document, 2001.

178

[82] D. Webster, N. Looker, D. Russell, L. Liu, and J. Xu, “An Ontology for Evaluation of

Network Enabled Capability Architectures,” RNEC’08: Realising Network Enabled Capa-

bility, 2008.

[83] C. Venters, D. Russell, L. Liu, Z. Luo, D. Webster, and J. Xu, “A Scenario-Based Architec-

ture Evaluation Framework for Network Enabled Capability,” in 2009 33rd Annual IEEE

International Computer Software and Applications Conference, pp. 9–12, IEEE, 2009.

[84] R. G. Ingalls, “Introduction to simulation,” in WSC ’01: Proceedings of the 33nd conference

on Winter simulation, (Washington, DC, USA), pp. 7–16, IEEE Computer Society, 2001.

[85] A. M. Law and D. W. Kelton, Simulation Modelling and Analysis. McGraw-Hill Education

- Europe, April 2000.

[86] J. H. Holland, “Complex adaptive systems,” Daedalus, vol. 121, no. 1, pp. 17–30, 1992.

[87] M. Kuhl, N. Steiger, F. Armstrong, and J. Joines, “Tutorial on agent-based modeling and

simulation,” in Proceedings of the 2005 Winter Simulation Conference.

[88] P. Davidsson, “Agent based social simulation: A computer science view,” Journal of Artifi-

cial Societies and Social Simulation, vol. 5, no. 1, p. 7, 2002.

[89] T. Hoverd and S. Stepney, “Environment orientation: An architecture for simulating com-

plex systems,” in Proceedings of the 2009 Workshop on Complex Systems Modelling and

Simulation, pp. 67–82, August 2010.

[90] R. M. Fujimoto, “Parallel discrete event simulation,” in WSC ’89: Proceedings of the 21st

conference on Winter simulation, (New York, NY, USA), pp. 19–28, ACM, 1989.

[91] S. Schlesinger, R. Crosbie, R. Gagne, G. Innis, C. Lalwani, J. Loch, R. Sylvester, R. Wright,

N. Kheir, and D. Bartos, “Terminology for model credibility,” Simulation, vol. 32, no. 3,

pp. 103–104, 1979.

[92] A. Anton, “Goal-based requirements analysis,” Proceedings of International Conference on

Requirements Engineering 1996, pp. 136 – 144.

[93] E. Letier, Reasoning about agents in goal-oriented requirements engineering. PhD thesis,

Universite catholique de Louvain, 2001.

[94] T. P. Kelly, Arguing Safety A Systematic Approach to Safety Case Management. PhD thesis,

Department of Computer Science, University of York, UK, 1998.

[95] T. Kelly and R. Weaver, “The goal structuring notation–a safety argument notation,” in

Proc. DSN 2004 Workshop on Assurance Cases, Citeseer, 2004.

[96] J. Miller, J. Mukerji, et al., “Model driven architecture (MDA),” Tech. Rep. ormsc/2001-

07-01, Object Management Group, 2001.

[97] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop domain-specific

languages,” ACM Comput. Surv., vol. 37, no. 4, pp. 316–344, 2005.

179

[98] C. Wienands and M. Golm, “Anatomy of a visual domain-specific language project in an

industrial context,” Model Driven Engineering Languages and Systems, vol. 5795, pp. 453–

467, 2009.

[99] R. Lemesle, “Transformation rules based on meta-modeling,” in Enterprise Distributed Ob-

ject Computing Workshop, 1998. EDOC ’98. Proceedings. Second International, pp. 113

–122, November 1998.

[100] F. Jouault and I. Kurtev, “Transforming models with ATL,” in Satellite Events at the MoD-

ELS 2005 Conference (J.-M. Bruel, ed.), vol. 3844 of Lecture Notes in Computer Science,

pp. 128–138, Springer Berlin / Heidelberg, 2006.

[101] D. Kolovos, An Extensible Platform for Specification of Integrated Languages for Model

Management. PhD thesis, PhD thesis, University of York, 2008.

[102] Object Management Group, “Meta object facility (MOF) 2.0 query/view/transformation

specification.” http://www.omg.org/spec/QVT/1.0/PDF/, April 2008.

[103] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood, “Transformation: The missing

link of mda,” in Graph Transformation, pp. 90–105, Springer, 2002.

[104] J. Bodeveix, M. Filali, J. Lawall, and G. Muller, “Formal methods meet domain specific

languages,” in Integrated Formal Methods, pp. 187–206, Springer, 2005.

[105] “Eclipse.” http://www.eclipse.org/.

[106] “Eclipse EMF - Eclipse modelling framework.” http://www.eclipse.org/emf.

[107] D. Kolovos, R. Paige, and F. Polack, “The Epsilon Transformation Language,” Theory and

Practice of Model Transformations, pp. 46–60, 2008.

[108] L. Rose, D. Kolovos, R. Paige, and F. Polack, “Model migration with Epsilon Flock,” The-

ory and Practice of Model Transformations, pp. 184–198, 2010.

[109] D. Kolovos, L. Rose, R. Paige, and F. Polack, “Raising the level of abstraction in the devel-

opment of GMF-based graphical model editors,” in Proceedings of the ICSE Workshop on

Modeling in Software Engineering, pp. 13–19, 2009.

[110] S. Kirkpatrick, J. Gelatt, C. D., and M. P. Vecchi, “Optimization by Simulated Annealing,”

Science, vol. 220, no. 4598, pp. 671–680, 1983.

[111] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and con-

ceptual comparison,” ACM Comput. Surv., vol. 35, no. 3, pp. 268–308, 2003.

[112] J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,”

in Proceedings of the 1st International Conference on Genetic Algorithms, (Hillsdale, NJ,

USA), pp. 93–100, L. Erlbaum Associates Inc., 1985.

[113] M. Pirlot, “General local search methods,” European Journal of Operational Research,

vol. 92, no. 3, pp. 493 – 511, 1996.

180

[114] S. Stepney, “Non Standard Computation Lecture Slides - Local Search.” http://

www-module.cs.york.ac.uk/nstc/lectures/02%20local.pdf [Last Accessed Au-

gust 2014].

[115] F. Glover, “Future paths for integer programming and links to artificial intelligence,” Com-

put. Oper. Res., vol. 13, no. 5, pp. 533–549, 1986.

[116] E. Teller, N. Metropolis, and A. Rosenbluth, “Equation of state calculations by fast com-

puting machines,” J. Chem. Phys, vol. 21, no. 13, pp. 1087–1092, 1953.

[117] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Professional, 1989.

[118] A. Konak, D. Coit, and A. Smith, “Multi-objective optimization using genetic algorithms:

A tutorial,” Reliability Engineering & System Safety, vol. 91, no. 9, pp. 992–1007, 2006.

[119] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective ge-

netic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2,

pp. 182–197, 2002.

[120] A. Saltelli and T. Homma, “Sensitivity analysis for model output : Performance of black

box techniques on three international benchmark exercises,” Computational Statistics &

Data Analysis, vol. 13, no. 1, pp. 73 – 94, 1992.

[121] A. Saltelli, Sensitivity analysis in practice: a guide to assessing scientific models. John

Wiley & Sons Inc, 2004.

[122] A. Saltelli, S. Tarantola, and K. P.-S. Chan, “A quantitative model-independent method for

global sensitivity analysis of model output,” Technometrics, vol. 41, no. 1, pp. pp. 39–56,

1999.

[123] G. A. Gorry and M. S. S. Morton, “A framework for management information systems,”

Sloan Management Review, pp. 55–70, 1971.

[124] R. Anthony, “Planning and Control Systems: A Framework for Analysis, Cambridge, MA,

Harvard University Graduate School of Business Administration,” Studies in Management

Control, 1965.

[125] S. Herbert and S. M. Dillon, “The new science of management decision,” in In Proceedings

of the 33 rd Conference of the Operational Research Society of New Zealand, 1960.

[126] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-oriented

domain analysis (foda) feasibility study,” tech. rep., DTIC Document, 1990.

[127] Ministry of Defence, “The MODAF strategic viewpoint.” https://www.gov.

uk/government/uploads/system/uploads/attachment_data/file/38710/

20100426MODAFStVViewpoint1_2_004U.pdf [Last Accessed August 2014], April

2010.

181

[128] L. H. De Figueiredo, R. Ierusalimschy, and W. Celes Filho, “The design and implementation

of a language for extending applications,” Anais do XXI Semish, pp. 273–283, 1994.

[129] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes Filho, “Lua-an extensible extension

language,” Softw., Pract. Exper., vol. 26, no. 6, pp. 635–652, 1996.

[130] Y. Zhang, M. Harman, and S. Mansouri, “The multi-objective next release problem,” in Pro-

ceedings of the 9th annual conference on Genetic and Evolutionary computation, pp. 1129–

1137, 2007.

[131] D. Kolovos, L. Rose, S. Abid, R. Paige, F. Polack, and G. Botterweck, “Taming EMF and

GMF using model transformation,” Model Driven Engineering Languages and Systems,

pp. 211–225, 2010.

[132] “Eclipse graphical modeling project.” http://www.eclipse.org/modeling/gmp/.

[133] S. Efftinge and M. Völter, “oaw xtext: A framework for textual dsls,” in Workshop on

Modeling Symposium at Eclipse Summit, vol. 32, 2006.

[134] E. Urwin, C. Venters, D. Russell, L. Liu, Z. Luo, D. Webster, M. Henshaw, and J. Xu,

“Scenario-based design and evaluation for capability,” in System of Systems Engineering

(SoSE), 2010 5th International Conference on, pp. 1–6, June 2010.

[135] K. Deb, “Multi-objective optimization,” in Search Methodologies (E. K. Burke and

G. Kendall, eds.), pp. 273–316, Springer US, 2005.

[136] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” Computer, vol. 27, no. 6,

pp. 17–26, 1994.

[137] J. del Sagrado, I. del A andguila, and F. Orellana, “Ant colony optimization for the next re-

lease problem: A comparative study,” in Second International Symposium on Search Based

Software Engineering, pp. 67 –76, 2010.

[138] A. Bagnall, V. Rayward-Smith, and I. Whittley, “The Next Release Problem,” Information

and Software Technology, vol. 43, no. 14, pp. 883–890, 2001.

[139] D. Greer and G. Ruhe, “Software release planning: an evolutionary and iterative approach,”

Information and Software Technology, vol. 46, no. 4, pp. 243–253, 2004.

[140] J. Durillo, Y. Zhang, E. Alba, and A. Nebro, “A study of the multi-objective next release

problem,” in 1st International Symposium on Search Based Software Engineering, pp. 49–

58, 2009.

[141] British Army, “Mastiff - British Army website.” https://www.army.mod.uk/

equipment/23248.aspx [Last Accessed January 2014].

[142] British Army, “Vector - British Army website.” https://www.army.mod.uk/

equipment/23246.aspx [Last Accessed January 2014].

182

[143] British Army, “Mastiff - British Army website.” http://www.army.mod.uk/

equipment/23275.aspx [Last Accessed January 2014].

[144] T. Gander, Jane’s Military Vehicles and Ground Support Equipment 1985 (Jane’s Year-

books). Jane’s Information Group, 1985.

[145] British Army, “5 Regiment - British Army website.” http://www.army.mod.uk/

artillery/regiments/24678.aspx [Last Accessed January 2014].

[146] Armed Forces International, “Buffalo armoured vehicle - explosives removal.” http:

//www.armedforces-int.com/projects/buffalo_armoured_vehicle.html [Last

Accessed January 2014].

[147] British Army, “Close support tanker - British Army website.” http://www.army.mod.

uk/equipment/23269.aspx [Last Accessed January 2014].

[148] Armed Forces.co.uk, “British Army - the royal logistics corps - vehicles - drops - truck util-

ity.” http://www.armedforces.co.uk/army/listings/l0146.html [Last Accessed

January 2014].

[149] Northrop Grumman, “Global hawk.” http://www.northropgrumman.com/

capabilities/globalhawk/Pages/default.aspx [Last Accessed January 2014].

[150] Armed Forces.co.uk, “Reacher satellite ground terminal.” http://www.armedforces.

co.uk/army/listings/l0103.html#Reacher [Last Accessed January 2014].

[151] British Army, British Army Vehicles and Equipment. March 2009.

[152] Royal Air Force, “RAF - MQ-9 reaper.” http://www.raf.mod.uk/equipment/

mq9reaper.cfm [Last Accessed January 2014].

[153] D. Kolovos, R. Paige, and F. Polack, “The Epsilon Object Language (EOL),” in Model

Driven Architecture: Foundations and Applications (A. Rensink and J. Warmer, eds.),

vol. 4066 of Lecture Notes in Computer Science, pp. 128–142, Springer Berlin / Heidel-

berg, 2006.

[154] “JFreeChart.” http://sourceforge.net/projects/jfreechart [Last Accessed Au-

gust 2014].

[155] C. Daly, M. Garcia, and L. Bigeardel, “Emfatic language for EMF developmentibm alpha-

works, 2004.” http://www.alphaworks.ibm.com/tech/emfatic.

[156] M. Wenz, C. Brand, F. Velasco, J. Pasch, M. Gorning, T. Kaiser, and C. Brun, “Graphiti - a

graphical tooling infrastructure.” http://www.eclipse.org/graphiti/ [Last Accessed

August 2014].

[157] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “SWI-Prolog,” Theory and Practice

of Logic Programming, vol. 12, no. 1-2, pp. 67–96, 2012.

183

[158] A. van Lamsweerde, “Goal-oriented requirements engineering: a roundtrip from research

to practice,” in Requirements Engineering Conference, 2004. Proceedings. 12th IEEE In-

ternational, pp. 4–7, IEEE, 2004.

[159] Amazon, “Amazon elastic compute cloud (ec2).” http://aws.amazon.com/ec2/ [Last

Accessed January 2014].

[160] E. Cantú-Paz, “A summary of research on parallel genetic algorithms,” tech. rep., Illinois

Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL.,

1995.

[161] A. Morse, “Strategic financial management of the defence budget,” tech. rep., National

Audit Office, July 2010.

[162] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using nonfunctional re-

quirements: A process-oriented approach,” Software Engineering, IEEE Transactions on,

vol. 18, no. 6, pp. 483–497, 1992.

[163] H. Hansson and B. Jonsson, “A logic for reasoning about time and reliability,” Formal

aspects of computing, vol. 6, no. 5, pp. 512–535, 1994.

[164] S. Peluchetti, “SciLua.” http://www.scilua.org [Last Accessed January 2014].

[165] R Development Core Team, R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.

184

